Multiwave interaction solutions of the partial reverse Space-time nonlocal Mel'nikov equation

被引:0
作者
Yang, Yan [1 ]
Liu, Yinping [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
N-soliton decomposition algorithm; Hirota method; soliton; interaction solutions; SOLITON-SOLUTIONS;
D O I
10.1088/1402-4896/ace088
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce appropriate rational and logarithmic transformations to transfer the partial reverse space-time nonlocal Mel'nikov equation in (2+1)-dimensions into its bilinear form. Then we extend the N-soliton decomposition algorithm and the inheritance solving strategy proposed by us to construct the higher order interaction solutions among solitons, periodic waves and rational waves for such type equation.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Ablowitz M.J., 1991, SOLITONS NONLINEAR E, V149
  • [2] Structure of optical soliton solution for nonliear resonant space-time Schrodinger equation in conformable sense with full nonlinearity term
    Alabedalhadi, Mohammed
    Al-Smadi, Mohammed
    Al-Omari, Shrideh
    Baleanu, Dumitru
    Momani, Shaher
    [J]. PHYSICA SCRIPTA, 2020, 95 (10)
  • [3] Optical soliton solutions to the generalized nonautonomous nonlinear Schrodinger equations in optical fibers via the sine-Gordon expansion method
    Ali, Khaled K.
    Wazwaz, Abdul-Majid
    Osman, M. S.
    [J]. OPTIK, 2020, 208
  • [4] Optical wave solutions of the higher-order nonlinear Schrodinger equation with the non-Kerr nonlinear term via modified Khater method
    Attia, Raghda A. M.
    Lu, Dianchen
    Ak, Turgut
    Khater, Mostafa M. A.
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (05):
  • [5] Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma
    Cheng, Chong-Dong
    Tian, Bo
    Zhou, Tian-Yu
    Shen, Yuan
    [J]. PHYSICS OF FLUIDS, 2023, 35 (03)
  • [6] Multiwave interaction solutions for the (3+1)-dimensional extended Jimbo-Miwa equation
    Cui, Wenying
    Li, Wei
    Liu, Yinping
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (35):
  • [7] Dickey L.A, 2003, SOLITON EQUATIONS HA, V26, DOI DOI 10.1142/ASMP
  • [8] EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES
    HIROTA, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) : 810 - 814
  • [9] Hirota R., 2004, Cambridge Tracts in Mathematics, V155, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]
  • [10] Theoretical exploration of thermal transportation with chemical reactions for sutterby fluid model obeying peristaltic mechanism
    Imran, Naveed
    Javed, Maryiam
    Sohail, Muhammad
    Thounthong, Phatiphat
    Abdelmalek, Zahra
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (04): : 7449 - 7459