IFHE: Intermediate-Feature Heterogeneity Enhancement for Image Synthesis in Data-Free Knowledge Distillation

被引:0
作者
Chen, Yi [1 ]
Liu, Ning [2 ]
Ren, Ao [1 ]
Yang, Tao [1 ]
Liu, Duo [1 ]
机构
[1] Chongqing Univ, Sch Comp Sci, Chongqing, Peoples R China
[2] Midea Grp, Beijing, Peoples R China
来源
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC | 2023年
基金
中国国家自然科学基金;
关键词
Knowledge distillation; model compression;
D O I
10.1109/DAC56929.2023.10247717
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-free knowledge distillation (DFKD) explores training a compact student network only by a pre-trained teacher without real data. Prevailing DFKD methods mainly consist of image synthesis and knowledge distillation. The synthesized images are crucial to enhance the student network performance. However, the images synthesized by existing methods cause high homogeneity on intermediate features, incurring undesired distillation performance. To address this problem, we propose the Intermediate-Feature Heterogeneity Enhancement (IFHE) method, which effectively enhances the heterogeneity of synthesized images by minimizing the loss between intermediate features and pre-set labels of the synthesized images Our IFHE outperforms the SOTA results on CIFAR-10/100 datasets of representative networks.
引用
收藏
页数:6
相关论文
共 25 条
[1]   Variational Information Distillation for Knowledge Transfer [J].
Ahn, Sungsoo ;
Hu, Shell Xu ;
Damianou, Andreas ;
Lawrence, Neil D. ;
Dai, Zhenwen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9155-9163
[2]   Data-Free Learning of Student Networks [J].
Chen, Hanting ;
Wang, Yunhe ;
Xu, Chang ;
Yang, Zhaohui ;
Liu, Chuanjian ;
Shi, Boxin ;
Xu, Chunjing ;
Xu, Chao ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3513-3521
[3]  
Choi K., 2021, ADV NEUR IN, V34
[4]  
Courbariaux M, 2016, Arxiv, DOI arXiv:1602.02830
[5]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, 10.48550/arXiv.1810.04805]
[6]  
Fang G., 2021, arXiv
[7]   Up to 100 x Faster Data-Free Knowledge Distillation [J].
Fang, Gongfan ;
Mo, Kanya ;
Wang, Xinchao ;
Song, Jie ;
Bei, Shitao ;
Zhang, Haofei ;
Song, Mingli .
THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, :6597-6604
[8]  
Han S, 2016, Arxiv, DOI arXiv:1510.00149
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Hinton G, 2015, Arxiv, DOI [arXiv:1503.02531, 10.48550/arXiv.1503.02531]