Metal-organic framework derived inverse opal type 3D graphitic carbon for highly stable lithium-ion batteries

被引:10
作者
Kumar, Nitish [1 ]
Pathak, Prakash Kumar [1 ]
Salunkhe, Rahul R. [1 ]
机构
[1] Indian Inst Technol Jammu Jagti, NH-44,PO Nagrota, Jammu 181221, J&K, India
关键词
ANODE MATERIALS; RECHARGEABLE LITHIUM; NANOPOROUS CARBONS; RECENT PROGRESS; ENERGY-STORAGE; PERFORMANCE; SPHERES; CHALLENGES; NANOSHEETS; ISSUES;
D O I
10.1039/d3nr02249h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon-based anodes for lithium-ion batteries have seen remarkable development and commercial acceptance during the past three decades. Still, the performance of these materials is limited due to the low surface area, stacking of layers, poor porosity, and meager conductivity. To overcome these limitations, we propose using polystyrene as a core and small-sized zeolitic imidazolate framework-67 (ZIF-67) particles as decorators to develop a highly porous three-dimensional graphitic carbon material. The developed material is optimized with the carbonization temperature for the best anodic performance of LIBs. The pyridinic nitrogen content in the material carbonized at 700 degrees C makes it high performing and more stable than the samples treated at 600, 800, and 900 degrees C. The packed coin cell exhibited an initial discharge capacity of 775 mA h g(-1) at a current density of 50 mA g(-1), which increases to 806 mA h g(-1) after testing the material at different current densities for 55 cycles. The packed half-cell exhibited a highly stable performance of about 96% even after testing for 2000 cycles at 1 A g(-1).
引用
收藏
页码:13740 / 13749
页数:10
相关论文
共 68 条
[11]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[12]   Effect of Various Carbonization Temperatures on ZIF-67 Derived Nanoporous Carbons [J].
Guo, Yanna ;
Tang, Jing ;
Salunkhe, Rahul R. ;
Alothman, Zeid Abdullah ;
Hossain, Md. Shahriar A. ;
Malgras, Victor ;
Yamauchi, Yusuke .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2017, 90 (08) :939-942
[13]   sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts:: X-ray photoelectron spectroscopy and first-principles calculation -: art. no. 045101 [J].
Haerle, R ;
Riedo, E ;
Pasquarello, A ;
Baldereschi, A .
PHYSICAL REVIEW B, 2002, 65 (04) :1-9
[14]   A review on the key issues of the lithium ion battery degradation among the whole life cycle [J].
Han, Xuebing ;
Lu, Languang ;
Zheng, Yuejiu ;
Feng, Xuning ;
Li, Zhe ;
Li, Jianqiu ;
Ouyang, Minggao .
ETRANSPORTATION, 2019, 1
[15]   Lithium and Sodium Storage on Graphitic Carbon Nitride [J].
Hankel, Marlies ;
Ye, Delai ;
Wang, Lianzhou ;
Searles, Debra J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (38) :21921-21927
[16]   From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake [J].
Jiang, Hai-Long ;
Liu, Bo ;
Lan, Ya-Qian ;
Kuratani, Kentaro ;
Akita, Tomoki ;
Shioyama, Hiroshi ;
Zong, Fengqi ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11854-11857
[17]   Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures [J].
Jiang, Lili ;
Fan, Zhuangjun .
NANOSCALE, 2014, 6 (04) :1922-1945
[18]   Ionic-Liquid-Assisted Synthesis of Mixed-Phase Manganese Oxide Nanorods for a High-Performance Aqueous Zinc-Ion Battery [J].
Joshi, Ved Prakash ;
Kumar, Nitish ;
Pathak, Prakash Kumar ;
Tamboli, Mohaseen S. ;
Truong, Nguyen Tam Nguyen ;
Kim, Chang Duk ;
Kalubarme, Ramchandra S. ;
Salunkhe, Rahul R. .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (20) :24366-24376
[19]   Lithium Storage ion Carbon Nanostructures [J].
Kaskhedikar, Nitin A. ;
Maier, Joachim .
ADVANCED MATERIALS, 2009, 21 (25-26) :2664-2680
[20]   Ni2P/graphitic carbon nanostructure electrode with superior electrochemical performance [J].
Kim, Yo-Seob ;
Kim, Min-Cheol ;
Moon, Sang-Hyun ;
Kim, Hyeona ;
Park, Kyung-Won .
ELECTROCHIMICA ACTA, 2020, 341 (341)