Infinitely many high energy solutions for fourth-order ellip- tic equations with p-Laplacian in bounded domain

被引:3
作者
Chahma, Youssouf [1 ,2 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Univ Sci & Technol Houari Boumediene, Fac Math, PB 32, Bab Ezzouar 16111, Algiers, Algeria
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2024年 / 32卷 / 02期
关键词
Variational methods; p-Laplacian; fourth-order elliptic equations; SIGN-CHANGING SOLUTIONS; BIHARMONIC-EQUATIONS; NONTRIVIAL SOLUTIONS; SCHRODINGER-EQUATIONS; MULTIPLICITY; EXISTENCE;
D O I
10.22436/jmcs.032.02.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following fourth-order elliptic equation with p-Laplacian, steep potential well and sublinear perturbation: { & UDelta;2u-& kappa;& UDelta;pu+ & mu;V(x)u = f(x, u) + & xi;(x)|u|q-2u, x E & omega;, u = & UDelta;u = 0, on partial differential & omega;, where N ? 5, & omega; is a bounded domain in RN with smooth boundary partial differential & omega;, & UDelta;2:= & UDelta;(& UDelta;) is the biharmonic operator, & UDelta;pu div (|Vu|p-2Vu)with p > 2, & mu;, & kappa; > 0 are parameters, f E C (& omega; x R,R), & xi; E L 2 2-q (& omega;) with 1 q < 2, we have the potential V E C(& omega;,R). Using variational methods, we establish the existence of infinitely many nontrivial high energy solutions under certain assumptions on V and f.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 31 条
[1]  
Alexiades V., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P805, DOI 10.1016/0362-546X(80)90080-2
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation [J].
An, Yukun ;
Liu, Renyi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3325-3331
[4]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[5]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]   On a fourth order elliptic equation with critical nonlinearity in dimension six [J].
Ben Ayed, M ;
Hammami, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :924-957
[8]   Multiplicity of solutions for a fourth order elliptic equation with critical exponent on compact manifolds [J].
Benalili, Mohammed .
APPLIED MATHEMATICS LETTERS, 2007, 20 (02) :232-237
[9]   Multiplicity of Solutions for Fourth-Order Elliptic Equations with p-Laplacian and Mixed Nonlinearity [J].
Benhanna, A. H. ;
Choutri, A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
[10]   Infinitely many small energy solutions for Fourth-Order Elliptic Equations with p-Laplacian in RN [J].
Chahma, Youssouf ;
Chen, Haibo .
APPLIED MATHEMATICS LETTERS, 2023, 144