RSI-YOLO: Object Detection Method for Remote Sensing Images Based on Improved YOLO

被引:22
|
作者
Li, Zhuang [1 ]
Yuan, Jianhui [1 ]
Li, Guixiang [1 ]
Wang, Hao [1 ]
Li, Xingcan [2 ]
Li, Dan [1 ]
Wang, Xinhua [1 ]
机构
[1] Northeast Elect Power Univ, Sch Comp Sci, Jilin 132012, Peoples R China
[2] Northeast Elect Power Univ, Sch Energy & Power Engn, Jilin 132012, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; object detection; YOLO; remote sensing images;
D O I
10.3390/s23146414
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the continuous development of deep learning technology, object detection has received extensive attention across various computer fields as a fundamental task of computational vision. Effective detection of objects in remote sensing images is a key challenge, owing to their small size and low resolution. In this study, a remote sensing image detection (RSI-YOLO) approach based on the YOLOv5 target detection algorithm is proposed, which has been proven to be one of the most representative and effective algorithms for this task. The channel attention and spatial attention mechanisms are used to strengthen the features fused by the neural network. The multi-scale feature fusion structure of the original network based on a PANet structure is improved to a weighted bidirectional feature pyramid structure to achieve more efficient and richer feature fusion. In addition, a small object detection layer is added, and the loss function is modified to optimise the network model. The experimental results from four remote sensing image datasets, such as DOTA and NWPU-VHR 10, indicate that RSI-YOLO outperforms the original YOLO in terms of detection performance. The proposed RSI-YOLO algorithm demonstrated superior detection performance compared to other classical object detection algorithms, thus validating the effectiveness of the improvements introduced into the YOLOv5 algorithm.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] MTGS-Yolo: a task-balanced algorithm for object detection in remote sensing images based on improved yolo
    Jin, Zhao
    Duan, Jiang
    Qiao, Liping
    He, Tian
    Shi, Xinyu
    Yan, Bohan
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04)
  • [2] BA-YOLO for Object Detection in Satellite Remote Sensing Images
    Wang, Kuilin
    Liu, Zhenze
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [3] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [4] CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images
    Xie, Siyu
    Zhou, Mei
    Wang, Chunle
    Huang, Shisheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 388 - 399
  • [5] SeMo-YOLO: A Multiscale Object Detection Network in Satellite Remote Sensing Images
    Li, Peng
    Che, Cheng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] YOLO-Remote: An Object Detection Algorithm for Remote Sensing Targets
    Fan, Kaizhe
    Li, Qian
    Li, Quanjun
    Zhong, Guangqi
    Chu, Yue
    Le, Zhen
    Xu, Yeling
    Li, Jianfeng
    IEEE ACCESS, 2024, 12 : 155654 - 155665
  • [7] YOLO-RS: A More Accurate and Faster Object Detection Method for Remote Sensing Images
    Xie, Tianyi
    Han, Wen
    Xu, Sheng
    REMOTE SENSING, 2023, 15 (15)
  • [8] YOLO for Penguin Detection and Counting Based on Remote Sensing Images
    Wu, Jiahui
    Xu, Wen
    He, Jianfeng
    Lan, Musheng
    REMOTE SENSING, 2023, 15 (10)
  • [9] YOLO-Faster: An efficient remote sensing object detection method based on AMFFN
    Tong, Yicheng
    Yue, Guan
    Fan, Longfei
    Lyu, Guosen
    Zhu, Deya
    Liu, Yan
    Meng, Boyuan
    Liu, Shu
    Mu, Xiaokai
    Tian, Congling
    SCIENCE PROGRESS, 2024, 107 (04)
  • [10] RSWD-YOLO: A Walnut Detection Method Based on UAV Remote Sensing Images
    Wang, Yansong
    Yang, Xuanxi
    Wang, Haoyu
    Wang, Huihua
    Chen, Zaiqing
    Yun, Lijun
    HORTICULTURAE, 2025, 11 (04)