Bayesian uncertainty quantification framework for wake model calibration and validation with historical wind farm power data

被引:2
作者
Aerts, Frederik [1 ]
Lanzilao, Luca [1 ]
Meyers, Johan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Leuven, Belgium
关键词
analytical wake model; Bayesian inference; calibration; historical power data; uncertainty quantification; validation; TURBINE WAKES; TURBULENCE; FLOW;
D O I
10.1002/we.2841
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The expected growth in wind energy capacity requires efficient and accurate models for wind farm layout optimization, control, and annual energy predictions. Although analytical wake models are widely used for these applications, several model components must be better understood to improve their accuracy. To this end, we propose a Bayesian uncertainty quantification framework for physics-guided data-driven model enhancement. The framework incorporates turbulence-related aleatoric uncertainty in historical wind farm data, epistemic uncertainty in the empirical parameters, and systematic uncertainty due to unmodeled physics. We apply the framework to the wake expansion parametrization in the Gaussian wake model and employ historical power data of the Westermost Rough Offshore Wind Farm. We find that the framework successfully distinguishes the three sources of uncertainty in the joint posterior distribution of the parameters. On the one hand, the framework allows for wake model calibration by selecting the maximum a posteriori estimators for the empirical parameters. On the other hand, it facilitates model validation by separating the measurement error and the model error distribution. In addition, the model adequacy and the effect of unmodeled physics are assessable via the posterior parameter uncertainty and correlations. Consequently, we believe that the Bayesian uncertainty quantification framework can be used to calibrate and validate existing and upcoming physics-guided models.
引用
收藏
页码:786 / 802
页数:17
相关论文
共 53 条
[1]   Turbulence and entrainment length scales in large wind farms [J].
Andersen, Soren J. ;
Sorensen, Jens N. ;
Mikkelsen, Robert F. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2091)
[2]  
[Anonymous], Stan Modeling Language Users Guide and Reference Manual (version 2.31)
[3]   Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms [J].
Barthelmie, R. ;
Badger, J. ;
Pryor, S. ;
Hasager, C. ;
Christiansen, M. ;
Jorgensen, B. .
WIND ENGINEERING, 2007, 31 (06) :369-382
[4]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[5]   Analytical solution for the cumulative wake of wind turbines in wind farms [J].
Bastankhah, Majid ;
Welch, Bridget L. ;
Martinez-Tossas, Luis A. ;
King, Jennifer ;
Fleming, Paul .
JOURNAL OF FLUID MECHANICS, 2021, 911
[6]   A new analytical model for wind-turbine wakes [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :116-123
[7]   An alternative form of the super-Gaussian wind turbine wake model [J].
Blondel, Frederic ;
Cathelain, Marie .
WIND ENERGY SCIENCE, 2020, 5 (03) :1225-1236
[8]  
Burton T., 2011, Wind energy handbook, DOI DOI 10.1002/9781119992714
[9]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[10]   Turbulence characteristics in wind-turbine wakes [J].
Crespo, A ;
Hernandez, J .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1996, 61 (01) :71-85