Almost K3 surface contains infinitely many linear Levi-flat hypersurfaces br

被引:1
作者
Lequen, Felix [1 ]
机构
[1] CY Cergy Paris Univ, Lab AGM, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France
来源
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES | 2023年 / 10卷
关键词
MINIMAL SETS;
D O I
10.5802/jep.233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the construction of real analytic Levi-flat hypersurfaces in K3 surfaces. By taking images of real hyperplanes, one can construct such hypersurfaces in two-dimensional complex tori. We show that "almost every" K3 surface contains infinitely many Levi-flat hyper -surfaces of this type. The proof relies mainly on a recent construction of Koike and Uehara, ideas of Verbitsky on ergodic complex structures, as well as an argument due to Ghys in the context of the study of the topology of generic leaves.
引用
收藏
页码:815 / 836
页数:23
相关论文
共 28 条
[1]   On Levi flat hypersurfaces with transversely affine foliation [J].
Adachi, Masanori ;
Biard, Severine .
MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) :373-383
[2]  
Arnold VI., 1976, FUNKT ANAL PRIL, V10, P1
[3]   Equicontinuous actions of semisimple groups [J].
Bader, Uri ;
Gelander, Tsachik .
GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (03) :1003-1039
[4]  
BARRETT D. E., 1992, J GEOM ANAL, V2, P489
[5]  
BARTH WP, 2004, COMPACT COMPLEX SURF
[6]  
Bekka B, 2008, NEW MATH MONOGR, P1, DOI 10.1017/CBO9780511542749
[7]   ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS [J].
BOREL, A ;
HARISHCHANDRA .
ANNALS OF MATHEMATICS, 1962, 75 (03) :485-&
[8]  
Brunella M., 1999, L'Enseignement Mathmatique, V45, P195
[9]  
González CC, 2017, ANN I FOURIER, V67, P2423
[10]   MINIMAL SETS OF ALGEBRAIC FOLIATIONS IN CP(N) [J].
CERVEAU, D .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (05) :1535-1543