Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease

被引:14
作者
Giuffre, Mauro [1 ,2 ]
Moretti, Rita [1 ,3 ]
Tiribelli, Claudio [3 ]
机构
[1] Univ Trieste, Dept Med Surg & Hlth Sci, I-34149 Trieste, Italy
[2] Yale Univ, Yale Sch Med, Dept Internal Med, New Haven, CT 06510 USA
[3] Fdn Italiana Fegato Onlus, Liver Brain Unit Rita Moretti, I-34149 Trieste, Italy
关键词
gut microbiota; gut microbiome; health; microbiome; eubiosis; dysbiosis; omics; metagenomics; machine learning; supervised learning; unsupervised learning; artificial intelligence;
D O I
10.3390/ijms24065229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human gut microbiome plays a crucial role in human health and has been a focus of increasing research in recent years. Omics-based methods, such as metagenomics, metatranscriptomics, and metabolomics, are commonly used to study the gut microbiome because they provide high-throughput and high-resolution data. The vast amount of data generated by these methods has led to the development of computational methods for data processing and analysis, with machine learning becoming a powerful and widely used tool in this field. Despite the promising results of machine learning-based approaches for analyzing the association between microbiota and disease, there are several unmet challenges. Small sample sizes, disproportionate label distribution, inconsistent experimental protocols, or a lack of access to relevant metadata can all contribute to a lack of reproducibility and translational application into everyday clinical practice. These pitfalls can lead to false models, resulting in misinterpretation biases for microbe-disease correlations. Recent efforts to address these challenges include the construction of human gut microbiota data repositories, improved data transparency guidelines, and more accessible machine learning frameworks; implementation of these efforts has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis [J].
Aguiar-Pulido, Vanessa ;
Huang, Wenrui ;
Suarez-Ulloa, Victoria ;
Cickovski, Trevor ;
Mathee, Kalai ;
Narasimhan, Giri .
EVOLUTIONARY BIOINFORMATICS, 2016, 12 :5-16
[2]   Complex Chemical Data Classification and Discrimination Using Locality Preserving Partial Least Squares Discriminant Analysis [J].
Aminu, Muhammad ;
Ahmad, Noor Atinah .
ACS OMEGA, 2020, 5 (41) :26601-26610
[3]   Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 [J].
Beghini, Francesco ;
McIver, Lauren J. ;
Blanco-Miguez, Aitor ;
Dubois, Leonard ;
Asnicar, Francesco ;
Maharjan, Sagun ;
Mailyan, Ana ;
Manghi, Paolo ;
Scholz, Matthias ;
Thomas, Andrew Maltez ;
Valles-Colomer, Mireia ;
Weingart, George ;
Zhang, Yancong ;
Zolfo, Moreno ;
Huttenhower, Curtis ;
Franzosa, Eric A. ;
Segata, Nicola .
ELIFE, 2021, 10
[4]   Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma [J].
Castellarin, Mauro ;
Warren, Rene L. ;
Freeman, J. Douglas ;
Dreolini, Lisa ;
Krzywinski, Martin ;
Strauss, Jaclyn ;
Barnes, Rebecca ;
Watson, Peter ;
Allen-Vercoe, Emma ;
Moore, Richard A. ;
Holt, Robert A. .
GENOME RESEARCH, 2012, 22 (02) :299-306
[5]   Microbiota-Liver Axis in Hepatic Disease [J].
Chassaing, Benoit ;
Etienne-Mesmin, Lucie ;
Gewirtz, Andrew T. .
HEPATOLOGY, 2014, 59 (01) :328-339
[6]   A Microbiota-Directed Food Intervention for Undernourished Children [J].
Chen, Robert Y. ;
Mostafa, Ishita ;
Hibberd, Matthew C. ;
Das, Subhasish ;
Mahfuz, Mustafa ;
Naila, Nurun N. ;
Islam, M. Munirul ;
Huq, Sayeeda ;
Alam, M. Ashraful ;
Zaman, Mahabub U. ;
Raman, Arjun S. ;
Webber, Daniel ;
Zhou, Cyrus ;
Sundaresan, Vinaik ;
Ahsan, Kazi ;
Meier, Martin F. ;
Barratt, Michael J. ;
Ahmed, Tahmeed ;
Gordon, Jeffrey, I .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (16) :1517-1528
[7]   GMrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison [J].
Dai, Die ;
Zhu, Jiaying ;
Sun, Chuqing ;
Li, Min ;
Liu, Jinxin ;
Wu, Sicheng ;
Ning, Kang ;
He, Li-Jie ;
Zhao, Xing-Ming ;
Chen, Wei-Hua .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D777-D784
[8]   Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients [J].
Derosa, Lisa ;
Routy, Bertrand ;
Fidelle, Marine ;
Iebba, Valerio ;
Alla, Laurie ;
Pasolli, Edoardo ;
Segata, Nicola ;
Desnoyer, Aude ;
Pietrantonio, Filippo ;
Ferrere, Gladys ;
Fahrner, Jean-Eudes ;
Chatellier, Emmanuelle Le ;
Pons, Nicolas ;
Galleron, Nathalie ;
Roume, Hugo ;
Duong, Connie P. M. ;
Mondragon, Laura ;
Iribarren, Kristina ;
Bonvalet, Melodie ;
Terrisse, Safae ;
Rauber, Conrad ;
Goubet, Anne-Gaelle ;
Daillere, Romain ;
Lemaitre, Fabien ;
Reni, Anna ;
Casu, Beatrice ;
Alou, Maryam Tidjani ;
Silva, Carolina Alves Costa ;
Raoult, Didier ;
Fizazi, Karim ;
Escudier, Bernard ;
Kroemer, Guido ;
Albiges, Laurence ;
Zitvogel, Laurence .
EUROPEAN UROLOGY, 2020, 78 (02) :195-206
[9]   Meta-analysis of gut microbiome studies identifies disease-specific and shared responses [J].
Duvallet, Claire ;
Gibbons, Sean M. ;
Gurry, Thomas ;
Irizarry, Rafael A. ;
Alm, Eric J. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring [J].
Ghannam, Ryan B. ;
Techtmann, Stephen M. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :1092-1107