Duvelisib attenuates bleomycin-induced pulmonary fibrosis via inhibiting the PI3K/Akt/mTOR signalling pathway

被引:6
|
作者
Li, Xiaohe [1 ,2 ]
Ma, Xiaoyang [1 ,2 ]
Miao, Yang [1 ,2 ]
Zhang, Jianwei [1 ,2 ]
Xi, Buri [1 ,2 ]
Li, Wenqi [1 ,2 ]
Zhang, Qianyi [1 ,2 ]
Chen, Li [1 ,2 ]
Yang, Yue [1 ,2 ]
Li, Hongli [3 ]
Wei, Luqing [3 ,4 ]
Zhou, Honggang [1 ,2 ,4 ]
Yang, Cheng [1 ,2 ,4 ]
机构
[1] Nankai Univ, Coll Pharm, State Key Lab Med Chem Biol, Tianjin Key Lab Mol Drug Res, Tianjin, Peoples R China
[2] Tianjin Int Joint Acad Biomed, Tianjin Key Lab Mol Drug Res, Tianjin, Peoples R China
[3] Tianjin Beichen Hosp, Dept Resp & Crit Care Med, Tianjin, Peoples R China
[4] Nankai Univ, Coll Pharm, State Key Lab Med Chem Biol, Tianjin Key Lab Mol Drug Res, 38 Tongyan Rd,Haihe Educ Pk, Tianjin 300353, Peoples R China
关键词
Duvelisib; myofibroblasts; PI3K; Akt; mTOR signalling pathway; pulmonary fibrosis; AUTOPHAGY; PATHOGENESIS;
D O I
10.1111/jcmm.17665
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-delta and PI3K-gamma, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.
引用
收藏
页码:422 / 434
页数:13
相关论文
共 50 条
  • [1] Tangeretin attenuates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via the PI3K/Akt pathway
    Li, Jiang
    Wei, Qian
    Song, Ke
    Wang, Youxin
    Yang, Yuxin
    Li, Miao
    Yu, Jiaying
    Su, Guangxu
    Peng, Luyuan
    Fu, Bendong
    Yi, Pengfei
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [2] Amifostine attenuates bleomycin-induced pulmonary fibrosis in mice through inhibition of the PI3K/Akt/mTOR signaling pathway
    Wenting Yang
    Lin Pan
    Yiju Cheng
    Xiao Wu
    Songsong Huang
    Juan Du
    Honglan Zhu
    Menglin Zhang
    Yuquan Zhang
    Scientific Reports, 13
  • [3] Amifostine attenuates bleomycin-induced pulmonary fibrosis in mice through inhibition of the PI3K/Akt/mTOR signaling pathway
    Yang, Wenting
    Pan, Lin
    Cheng, Yiju
    Wu, Xiao
    Huang, Songsong
    Du, Juan
    Zhu, Honglan
    Zhang, Menglin
    Zhang, Yuquan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Revealing the mechanism of Jiegeng decoction attenuates bleomycin-induced pulmonary fibrosis via PI3K/Akt signaling pathway based on lipidomics and transcriptomics
    Xu, Yong
    Wang, Xuan
    Han, Di
    Wang, Junyi
    Luo, Zichen
    Jin, Tianzi
    Shi, Chen
    Zhou, Xianmei
    Lin, Lili
    Shan, Jinjun
    PHYTOMEDICINE, 2022, 102
  • [5] Revealing the mechanism of Jiegeng decoction attenuates bleomycin-induced pulmonary fibrosis via PI3K/Akt signaling pathway based on lipidomics and transcriptomics
    Xu, Yong
    Wang, Xuan
    Han, Di
    Wang, Junyi
    Luo, Zichen
    Jin, Tianzi
    Shi, Chen
    Zhou, Xianmei
    Lin, Lili
    Shan, Jinjun
    PHYTOMEDICINE, 2022, 102
  • [6] Baicalin alleviates bleomycin-induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway
    Zhao, Hong
    Li, Chundi
    Li, Lina
    Liu, Junying
    Gao, Yinghui
    Mu, Kun
    Chen, Donghe
    Lu, Aiping
    Ren, Yuanyuan
    Li, Zhenhua
    MOLECULAR MEDICINE REPORTS, 2020, 21 (06) : 2321 - 2334
  • [7] Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway
    Gui, Xianhua
    Chen, Hongwei
    Cai, Hourong
    Sun, Lingyun
    Gu, Luo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 498 (03) : 660 - 666
  • [8] Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice
    Lin Pan
    Yiju Cheng
    Wenting Yang
    Xiao Wu
    Honglan Zhu
    Meigui Hu
    Yuquan Zhang
    Menglin Zhang
    Inflammation, 2023, 46 : 1531 - 1542
  • [9] Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice
    Pan, Lin
    Cheng, Yiju
    Yang, Wenting
    Wu, Xiao
    Zhu, Honglan
    Hu, Meigui
    Zhang, Yuquan
    Zhang, Menglin
    INFLAMMATION, 2023, 46 (04) : 1531 - 1542
  • [10] Targeting the PI3K/Akt/mTOR signalling pathway in Cystic Fibrosis
    R. Reilly
    M. S. Mroz
    E. Dempsey
    K. Wynne
    S. J. Keely
    E. F. McKone
    C. Hiebel
    C. Behl
    J. A. Coppinger
    Scientific Reports, 7