GROUNDWATER LEVEL PREDICTION USING DEEP RECURRENT NEURAL NETWORKS AND UNCERTAINTY ASSESSMENT

被引:1
|
作者
Eghrari, Z. [1 ]
Delavar, M. R. [2 ]
Zare, M. [3 ]
Mousavi, M. [1 ]
Nazari, B. [4 ]
Ghaffarian, S. [5 ]
机构
[1] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[2] Univ Tehran, Sch Surveying & Geospatial Eng, Coll Engn, Ctr Excellence Geomat Eng Disaster Management & L, Tehran, Iran
[3] Int Inst Earthquake Engn & Seismol, Tehran, Iran
[4] Univ Tehran, Sch Surveying & Geospatial Engn, GIS Dept, Coll Engn, Tehran, Iran
[5] UCL, Inst Risk & Disaster Reduct, London, England
来源
GEOSPATIAL WEEK 2023, VOL. 10-1 | 2023年
关键词
Groundwater Level; Climate Change; GIS; Deep Learning; LSTM; Uncertainty; MODELS; RMSE;
D O I
10.5194/isprs-annals-X-1-W1-2023-493-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Groundwater is one of the most important sources of regional water supply for humans. In recent years, several factors have contributed to a significant decline in groundwater levels (GWL) in certain regions. As a result of climate change, such as temperature increase, rainfall decrease, and changes in relative humidity, it is necessary to investigate and model the effects of these factors on GWL. Although a number of researches have been conducted on GWL modeling with machine learning (ML) and deep learning (DL) algorithms, only a limited number of studies have reported model uncertainty. In this paper, GWL modeling of some piezometric wells has been conducted by considering the effects of the meteorological parameters with Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. The models were trained on one piezometric well data and predictions were executed on six other wells. To perform an uncertainty assessment, the models were run 10 times and their means were calculated. Subsequently, their standard deviations were considered to evaluate the outcomes. In addition, the prediction power of the models was validated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and R-Squared (R-2). Finally, for all the six wells that did not participate in the training phase, the prediction functions of the trained models were run 10 times and their accuracy was assessed. The results indicate that LSTM (R-2=95.6895, RMSE=0.4744 m, NRMSE=0.0558, MAE=0.3383 m) had a better performance compared to that of GRU (R-2=95.2433, RMSE=0.4984 m, NRMSE=0.0586, MAE=0.3658 m) on the GWL modeling.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条
  • [1] Time series-based groundwater level forecasting using gated recurrent unit deep neural networks
    Lin, Haiping
    Gharehbaghi, Amin
    Zhang, Qian
    Band, Shahab S.
    Pai, Hao Ting
    Chau, Kwok-Wing
    Mosavi, Amir
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 1655 - 1672
  • [2] Link quality prediction in wireless community networks using deep recurrent neural networks
    Abdel-Nasser, Mohamed
    Mahmoud, Karar
    Omer, Osama A.
    Lehtonen, Matti
    Puig, Domenec
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3531 - 3543
  • [3] Forecasting groundwater level using artificial neural networks
    Sreekanth, P. D.
    Geethanjali, N.
    Sreedevi, P. D.
    Ahmed, Shakeel
    Kumar, N. Ravi
    Jayanthi, P. D. Kamala
    CURRENT SCIENCE, 2009, 96 (07): : 933 - 939
  • [4] Lake Level Prediction using Feed Forward and Recurrent Neural Networks
    Bahrudin Hrnjica
    Ognjen Bonacci
    Water Resources Management, 2019, 33 : 2471 - 2484
  • [5] Lake Level Prediction using Feed Forward and Recurrent Neural Networks
    Hrnjica, Bahrudin
    Bonacci, Ognjen
    WATER RESOURCES MANAGEMENT, 2019, 33 (07) : 2471 - 2484
  • [6] New Results for Prediction of Chaotic Systems Using Deep Recurrent Neural Networks
    Serrano-Perez, Jose de Jesus
    Fernandez-Anaya, Guillermo
    Carrillo-Moreno, Salvador
    Yu, Wen
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1579 - 1596
  • [7] New Results for Prediction of Chaotic Systems Using Deep Recurrent Neural Networks
    José de Jesús Serrano-Pérez
    Guillermo Fernández-Anaya
    Salvador Carrillo-Moreno
    Wen Yu
    Neural Processing Letters, 2021, 53 : 1579 - 1596
  • [8] Groundwater level reconstruction using long-term climate reanalysis data and deep neural networks
    Chidepudi, Sivarama Krishna Reddy
    Massei, Nicolas
    Jardani, Abderrahim
    Henriot, Abel
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 51
  • [9] Groundwater-level prediction in Visakhapatnam district, Andhra Pradesh, India, using Bayesian Neural Networks
    Rajesh, Rekapalli
    Mathews, Gathala Vinod
    Rao, N. Purnachandra
    Begum, Shaik Kareemunisa
    ACTA GEOPHYSICA, 2024, 72 (04) : 2759 - 2772
  • [10] Streamflow Prediction in the Mekong River Basin Using Deep Neural Networks
    Nguyen, Thi-Thu-Ha
    Vu, Duc-Quang
    Mai, Son T.
    Dang, Thanh Duc
    IEEE ACCESS, 2023, 11 : 97930 - 97943