Solar gamma ray probe of local cosmic ray electrons

被引:0
|
作者
Yang, Hong-Gang [1 ,2 ]
Gao, Yu [3 ]
Ma, Yin-Zhe [1 ,4 ,5 ]
Crocker, Roland M. [6 ]
机构
[1] Chinese Acad Sci, Key Lab Radio Astron, Purple Mt Observ, Nanjing 210023, Peoples R China
[2] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China
[4] Stellenbosch Univ, Dept Phys, ZA-7602 Matieland, South Africa
[5] Natl Inst Theoret & Computat Sci NITheCS, ZA-7602 Stellenbosch, Matieland, South Africa
[6] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
EMISSION; MODULATION;
D O I
10.1103/PhysRevD.108.L061304
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
TeV-range cosmic ray electrons and positrons (CREs) have been directly measured in the search for new physics or unknown astrophysical sources. CREs can inverse-Compton scatter solar photons and boost their energies into gamma ray bands. Any potential CRE excess would enhance the resultant inverse Compton emission spectrum in the relevant energy range, offering a new window to verify the measured CRE spectrum. In this paper, we show that an excess in the TeV range of the CRE spectrum, such as the one indicated by the DAMPE experiment, can induce a characteristic solar gamma ray signal. Accounting for contamination from extragalactic gamma ray backgrounds (EGB), we forecast the DAMPE feature is testable (greater than or similar to 4s) with a similar to 10(5) m(2) yr exposure in the off-disk direction. This can be achieved by long-exposure observations of water Cherenkov telescopes, such as LHAASO ( 7.2 years) and HAWC (25.9 years).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Cosmic-ray acceleration and gamma-ray signals from radio supernovae
    Marcowith, A.
    Renaud, M.
    Dwarkadas, V.
    Tatischeff, V.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2014, 256 : 94 - 100
  • [22] Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA
    Acero, F.
    Bamba, A.
    Casanova, S.
    de Cea, E.
    Wilhelmi, E. de Ona
    Gabici, S.
    Gallant, Y.
    Hadasch, D.
    Marcowith, A.
    Pedaletti, G.
    Reimer, O.
    Renaud, M.
    Torres, D. F.
    Volpe, F.
    ASTROPARTICLE PHYSICS, 2013, 43 : 276 - 286
  • [23] Cosmic ray protons in the inner Galaxy and the Galactic Center gamma-ray excess
    Carlson, Eric
    Profumo, Stefano
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [24] On the Galactic Center being the main source of galactic cosmic rays as evidenced by recent cosmic ray and gamma ray observations
    Guo, Yi-Qing
    Feng, Zhao-Yang
    Yuan, Qiang
    Liu, Cheng
    Hu, Hong-Bo
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [25] THE DESCENT OF THE SOLAR CYCLE 24 COSMIC RAY MODULATION
    Ahluwalia, H. S.
    Ygbuhay, R. C.
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 13), 2013, 1539 : 331 - 333
  • [26] Rotation of the Earth, solar activity and cosmic ray intensity
    Barlyaeva, T.
    Bard, E.
    Abarca-del-Rio, R.
    ANNALES GEOPHYSICAE, 2014, 32 (07) : 761 - 771
  • [27] Impact of Anisotropic Cosmic-Ray Transport on the Gamma-Ray Signatures in the Galactic Center
    Doerner, J.
    Becker Tjus, J.
    Blomenkamp, P. S.
    Fichtner, H.
    Franckowiak, A.
    Zaninger, E. M.
    ASTROPHYSICAL JOURNAL, 2024, 965 (02)
  • [28] Cosmic ray studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
    Thompson, D. J.
    Baldini, L.
    Uchiyama, Y.
    ASTROPARTICLE PHYSICS, 2012, 39-40 : 22 - 32
  • [29] The cosmic-ray positron excess and its imprint in the Galactic gamma-ray sky
    Rocamora, M.
    Ascasibar, Y.
    Sanchez-Conde, M. A.
    Wechakama, M.
    Luque, P. de la Torre
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (07):
  • [30] Transport of Cosmic-Ray Electrons from 1 au to the Sun
    Petrosian, Vahe
    Orlando, Elena
    Strong, Andrew
    ASTROPHYSICAL JOURNAL, 2023, 943 (01)