Solar gamma ray probe of local cosmic ray electrons

被引:0
|
作者
Yang, Hong-Gang [1 ,2 ]
Gao, Yu [3 ]
Ma, Yin-Zhe [1 ,4 ,5 ]
Crocker, Roland M. [6 ]
机构
[1] Chinese Acad Sci, Key Lab Radio Astron, Purple Mt Observ, Nanjing 210023, Peoples R China
[2] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China
[4] Stellenbosch Univ, Dept Phys, ZA-7602 Matieland, South Africa
[5] Natl Inst Theoret & Computat Sci NITheCS, ZA-7602 Stellenbosch, Matieland, South Africa
[6] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
EMISSION; MODULATION;
D O I
10.1103/PhysRevD.108.L061304
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
TeV-range cosmic ray electrons and positrons (CREs) have been directly measured in the search for new physics or unknown astrophysical sources. CREs can inverse-Compton scatter solar photons and boost their energies into gamma ray bands. Any potential CRE excess would enhance the resultant inverse Compton emission spectrum in the relevant energy range, offering a new window to verify the measured CRE spectrum. In this paper, we show that an excess in the TeV range of the CRE spectrum, such as the one indicated by the DAMPE experiment, can induce a characteristic solar gamma ray signal. Accounting for contamination from extragalactic gamma ray backgrounds (EGB), we forecast the DAMPE feature is testable (greater than or similar to 4s) with a similar to 10(5) m(2) yr exposure in the off-disk direction. This can be achieved by long-exposure observations of water Cherenkov telescopes, such as LHAASO ( 7.2 years) and HAWC (25.9 years).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] TeV solar gamma rays from cosmic-ray interactions
    Zhou, Bei
    Ng, Kenny C. Y.
    Beacom, John F.
    Peter, Annika H. G.
    PHYSICAL REVIEW D, 2017, 96 (02):
  • [2] Positron annihilation as a cosmic ray probe
    Ohira, Yutaka
    Kohri, Kazunori
    Kawanaka, Norita
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (01) : L102 - L106
  • [3] Cosmic ray electrons released by supernova remnants
    Morlino, G.
    Celli, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (04) : 6142 - 6154
  • [4] ISOTROPIC GAMMA-RAY BACKGROUND: COSMIC-RAY-INDUCED ALBEDO FROM DEBRIS IN THE SOLAR SYSTEM?
    Moskalenko, Igor V.
    Porter, Troy A.
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 692 (01) : L54 - L57
  • [5] Cosmic ray interactions in the solar atmosphere
    Hudson, Hugh S.
    MacKinnon, Alec
    Szydlarski, Mikolaj
    Carlsson, Mats
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (04) : 4852 - 4856
  • [6] Deriving the cosmic ray spectrum from gamma-ray observations
    Kachelriess, M.
    Ostapchenko, S.
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [7] The transport of galactic and jovian cosmic ray electrons in the heliosphere
    Ferreira, SES
    HELIOSPHERIC COSMIC RAY TRANSPORT, MODULATION AND TURBULENCE, 2005, 35 (04): : 586 - 596
  • [8] Cosmic ray protons and electrons from supernova remnants
    Cristofari, P.
    Blasi, P.
    Caprioli, D.
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [9] SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA
    Chen, Ding
    Huang, Jing
    Jin, Hong-Bo
    ASTROPHYSICAL JOURNAL, 2015, 811 (02)
  • [10] Probing galactic cosmic ray distribution with TeV gamma-ray sky
    Cataldo, M.
    Pagliaroli, G.
    Vecchiotti, V.
    Villante, F. L.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (12):