Enhancing non-small cell lung cancer radiotherapy planning: A deep learning-based multi-modal fusion approach for accurate GTV segmentation

被引:1
作者
Atiya, Shaik Ummay [1 ]
Ramesh, N. V. K. [1 ]
机构
[1] KLEF, Dept Elect & Commun Engn, Guntur, India
关键词
Automated technique; GTV segmentation; Deep learning; Multi-modal fusion; NSCLC; Radiotherapy; VOLUME DELINEATION; RADIATION-THERAPY; REGISTRATION; CHALLENGES; NETWORKS;
D O I
10.1016/j.bspc.2024.105987
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the treatment of non-small cell lung cancer (NSCLC), radiotherapy is pivotal. However, manual segmentation of the gross target volume (GTV) is both time-consuming and prone to errors. This study presents an automated solution using deep learning-based multi -modal fusion for efficient GTV segmentation. The method integrates data from CT, and PET images, enhancing GTV segmentation precision. Key features include intensity normalization and random cropping, which ensure data integration and variety. The system's core is the 3D U -Net, extracting detailed features from CT images, and the DeepLab network managing multi -modal fusion. The 3D Unet-DeepLab model demonstrates superior performance with a Dice Similarity Coefficient (DSC) of 0.7502, outperforming the 3D ResSE-Unet. Additionally, the 3D Unet_4B model surpasses existing techniques, with a DSC of 0.7502 and a Hausdorff Distance 95 mm (HD95) of 19.78 mm. These results confirm the method's capability in improving GTV segmentation precision and spatial consistency. Automating segmentation through this innovative method not only refines tumor targeting but also minimizes potential damage to healthy tissues, offering implications for personalized radiotherapy planning and enhanced NSCLC treatment outcomes.
引用
收藏
页数:17
相关论文
共 33 条
  • [1] Adedigba Adeyinka P, 2021, Intell Based Med, V5, P100034, DOI 10.1016/j.ibmed.2021.100034
  • [2] Multimodal Medical Image Registration and Fusion for Quality Enhancement
    Azam, Muhammad Adeel
    Khan, Khan Bahadar
    Ahmad, Muhammad
    Mazzara, Manuel
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 821 - 840
  • [3] Geometric and Dosimetric Evaluation of a Commercially Available Auto-segmentation Tool for Gross Tumour Volume Delineation in Locally Advanced Non-small Cell Lung Cancer: a Feasibility Study
    Barrett, S.
    Simpkin, A. J.
    Walls, G. M.
    Leech, M.
    Marignol, L.
    [J]. CLINICAL ONCOLOGY, 2021, 33 (03) : 155 - 162
  • [4] Deep Learning Improved Clinical Target Volume Contouring Quality and Efficiency for Postoperative Radiation Therapy in Non-small Cell Lung Cancer
    Bi, Nan
    Wang, Jingbo
    Zhang, Tao
    Chen, Xinyuan
    Xia, Wenlong
    Miao, Junjie
    Xu, Kunpeng
    Wu, Linfang
    Fan, Quanrong
    Wang, Luhua
    Li, Yexiong
    Zhou, Zongmei
    Dai, Jianrong
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [5] FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0
    Boellaard, Ronald
    Delgado-Bolton, Roberto
    Oyen, Wim J. G.
    Giammarile, Francesco
    Tatsch, Klaus
    Eschner, Wolfgang
    Verzijlbergen, Fred J.
    Barrington, Sally F.
    Pike, Lucy C.
    Weber, Wolfgang A.
    Stroobants, Sigrid
    Delbeke, Dominique
    Donohoe, Kevin J.
    Holbrook, Scott
    Graham, Michael M.
    Testanera, Giorgio
    Hoekstra, Otto S.
    Zijlstra, Josee
    Visser, Eric
    Hoekstra, Corneline J.
    Pruim, Jan
    Willemsen, Antoon
    Arends, Bertjan
    Kotzerke, Joerg
    Bockisch, Andreas
    Beyer, Thomas
    Chiti, Arturo
    Krause, Bernd J.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) : 328 - 354
  • [6] Cancer Imaging Archive, US
  • [7] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [8] Cheng JH, 2019, IEEE INT C BIOINFORM, P1031, DOI [10.1109/BIBM47256.2019.8983092, 10.1109/bibm47256.2019.8983092]
  • [9] Automated approach for segmenting gross tumor volumes for lung cancer stereotactic body radiation therapy using CT-based dense V-networks
    Cui, Yunhao
    Arimura, Hidetaka
    Nakano, Risa
    Yoshitake, Tadamasa
    Shioyama, Yoshiyuki
    Yabuuchi, Hidetake
    [J]. JOURNAL OF RADIATION RESEARCH, 2021, 62 (02) : 346 - 355
  • [10] Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET)
    Erdi, YE
    Rosenzweig, K
    Erdi, AK
    Macapinlac, HA
    Hu, YC
    Braban, LE
    Humm, JL
    Squire, OD
    Chui, CS
    Larson, SM
    Yorke, ED
    [J]. RADIOTHERAPY AND ONCOLOGY, 2002, 62 (01) : 51 - 60