Highly optimized quantum circuits synthesized via data-flow engines

被引:3
作者
Rakyta, Peter [1 ,2 ]
Morse, Gregory [3 ]
Nadori, Jakab [1 ]
Majnay-Takacs, Zita [2 ]
Mencer, Oskar [4 ]
Zimboras, Zoltan [2 ,5 ]
机构
[1] Eotvos Lorand Univ, Dept Phys Complex Syst, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[2] Wigner Res Ctr Phys, 29-33 Konkoly Thege Mikl Str, H-1121 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Programming Languages & Compilers, Pazmany Peter setany 1-a, H-1117 Budapest, Hungary
[4] Groq Co, Maxeler Technol, 16192 Coastal Hwy, Lewes, DE 19958 USA
[5] Algorithmiq Ltd, Kanavakatu 3C, Helsinki 00160, Finland
基金
匈牙利科学研究基金会;
关键词
Quantum compilation; Quantum computer simulation; Circuit compression; Data-flow programming; FPGA; EMULATION; ALGORITHMS;
D O I
10.1016/j.jcp.2024.112756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The formulation of quantum programs in terms of the fewest number of gate operations is crucial to retrieve meaningful results from the noisy quantum processors accessible these days. In this work, we demonstrate a use-case for Field Programmable Gate Array (FPGA) based data-flow engines (DFEs) to scale up variational quantum compilers to synthesize circuits up to 9-qubit programs. This gate decomposer utilizes a newly developed DFE quantum computer simulator that is designed to simulate arbitrary quantum circuit consisting of single qubit rotations and controlled two-qubit gates on FPGA chips. In our benchmark with the QISKIT package, the depth of the circuits produced by the SQUANDER package (with the DFE accelerator support) were less by 97% on average, while the fidelity of the circuits was still close to unity up to an error of similar to 10-4.
引用
收藏
页数:12
相关论文
共 65 条
[51]  
Rakyta P, 2022, QUANTUM-AUSTRIA, V6
[52]  
Robertson N. F., 2022, arXiv
[53]  
Robertson NF, 2024, Arxiv, DOI arXiv:2301.08609
[54]  
Saki M., 2022, inEmerging Computing: From Devices to Sys-tems: Looking Beyond Moore and Von Neumann, P371, DOI [10.1007/978-981-16-7487-712, DOI 10.1007/978-981-16-7487-712]
[55]   Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J].
Shor, PW .
SIAM REVIEW, 1999, 41 (02) :303-332
[56]   t|ket⟩: a retargetable compiler for NISQ devices [J].
Sivarajah, Seyon ;
Dilkes, Silas ;
Cowtan, Alexander ;
Simmons, Will ;
Edgington, Alec ;
Duncan, Ross .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (01)
[57]   LEAP: Scaling Numerical Optimization Based Synthesis Using an Incremental Approach [J].
Smith, Ethan ;
Davis, Marc Grau ;
Larson, Jeffrey ;
Younis, Ed ;
Oftelie, Lindsay Bassman ;
Lavrijsen, Wim ;
Iancu, Costin .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (01)
[58]   Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing [J].
Subasi, Yigit ;
Somma, Rolando D. ;
Orsucci, Davide .
PHYSICAL REVIEW LETTERS, 2019, 122 (06)
[59]  
Suzuki T, 2023, Arxiv, DOI arXiv:2206.09593
[60]  
Weiden M, 2022, Arxiv, DOI arXiv:2206.13645