Highly optimized quantum circuits synthesized via data-flow engines

被引:3
作者
Rakyta, Peter [1 ,2 ]
Morse, Gregory [3 ]
Nadori, Jakab [1 ]
Majnay-Takacs, Zita [2 ]
Mencer, Oskar [4 ]
Zimboras, Zoltan [2 ,5 ]
机构
[1] Eotvos Lorand Univ, Dept Phys Complex Syst, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[2] Wigner Res Ctr Phys, 29-33 Konkoly Thege Mikl Str, H-1121 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Programming Languages & Compilers, Pazmany Peter setany 1-a, H-1117 Budapest, Hungary
[4] Groq Co, Maxeler Technol, 16192 Coastal Hwy, Lewes, DE 19958 USA
[5] Algorithmiq Ltd, Kanavakatu 3C, Helsinki 00160, Finland
基金
匈牙利科学研究基金会;
关键词
Quantum compilation; Quantum computer simulation; Circuit compression; Data-flow programming; FPGA; EMULATION; ALGORITHMS;
D O I
10.1016/j.jcp.2024.112756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The formulation of quantum programs in terms of the fewest number of gate operations is crucial to retrieve meaningful results from the noisy quantum processors accessible these days. In this work, we demonstrate a use-case for Field Programmable Gate Array (FPGA) based data-flow engines (DFEs) to scale up variational quantum compilers to synthesize circuits up to 9-qubit programs. This gate decomposer utilizes a newly developed DFE quantum computer simulator that is designed to simulate arbitrary quantum circuit consisting of single qubit rotations and controlled two-qubit gates on FPGA chips. In our benchmark with the QISKIT package, the depth of the circuits produced by the SQUANDER package (with the DFE accelerator support) were less by 97% on average, while the fidelity of the circuits was still close to unity up to an error of similar to 10-4.
引用
收藏
页数:12
相关论文
共 65 条
[31]   Variational quantum evolution equation solver [J].
Leong, Fong Yew ;
Ewe, Wei-Bin ;
Koh, Dax Enshan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[32]   Experimental comparison of two quantum computing architectures [J].
Linke, Norbert M. ;
Maslov, Dmitri ;
Roetteler, Martin ;
Debnath, Shantanu ;
Figgatt, Caroline ;
Landsman, Kevin A. ;
Wright, Kenneth ;
Monroe, Christopher .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) :3305-3310
[33]  
Madden L, 2022, Arxiv, DOI arXiv:2205.04025
[34]   Best Approximate Quantum Compiling Problems [J].
Madden, Liam ;
Simonetto, Andrea .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (02)
[35]   Efficient Computation Techniques and Hardware Architectures for Unitary Transformations in Support of Quantum Algorithm Emulation [J].
Mahmud, Naveed ;
Haase-Divine, Bennett ;
Kuhnke, Annika ;
Rai, Apurva ;
MacGillivray, Andrew ;
El-Araby, Esam .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2020, 92 (09) :1017-1037
[36]   Dimension Reduction Using Quantum Wavelet Transform on a High-Performance Reconfigurable Computer [J].
Mahmud, Naveed ;
El-Araby, Esam .
INTERNATIONAL JOURNAL OF RECONFIGURABLE COMPUTING, 2019, 2019
[37]   Barren plateaus in quantum neural network training landscapes [J].
McClean, Jarrod R. ;
Boixo, Sergio ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Neven, Hartmut .
NATURE COMMUNICATIONS, 2018, 9
[38]   Investigating hardware acceleration for simulation of CFD quantum circuits [J].
Moawad, Youssef ;
Vanderbauwhede, Wim ;
Steijl, Rene .
FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
[39]   Five, six, and seven-term Karatsuba-like formulae [J].
Montgomery, PL .
IEEE TRANSACTIONS ON COMPUTERS, 2005, 54 (03) :362-369
[40]   QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum Circuit Design [J].
Nagarajan, Harsha ;
Lockwood, Owen ;
Coffrin, Carleton .
PROCEEDINGS OF SECOND INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS 2021), 2021, :55-63