TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [41] Transfer learning for spatio-temporal transferability of real-time crash prediction models
    Man, Cheuk Ki
    Quddus, Mohammed
    Theofilatos, Athanasios
    ACCIDENT ANALYSIS AND PREVENTION, 2022, 165
  • [42] Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns
    Sun, Junfeng
    Fang, Yong
    Luo, Hu
    Yao, Zhigang
    Xiang, Long
    Wang, Jianfeng
    Wang, Yubo
    Jiang, Yifan
    UNDERGROUND SPACE, 2025, 20 : 100 - 118
  • [43] Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies
    Zhang, Zhengchao
    Li, Meng
    Lin, Xi
    Wang, Yinhai
    He, Fang
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 105 : 297 - 322
  • [44] Spatio-Temporal Attention-Based Deep Learning Framework for Mesoscale Eddy Trajectory Prediction
    Wang, Xuegong
    Li, Chong
    Wang, Xinning
    Tan, Lining
    Wu, Jin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3853 - 3867
  • [45] STCTb: A Spatio-Temporal Collaborative Transformer Block for Brain Diseases Classification Using fMRI Time Series
    Yan, Yuzi
    Shan, Keyi
    Li, Wan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 77 - 90
  • [46] Long-Term Traffic Speed Prediction Based on Multiscale Spatio-Temporal Feature Learning Network
    Zang, Di
    Ling, Jiawei
    Wei, Zhihua
    Tang, Keshuang
    Cheng, Jiujun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3700 - 3709
  • [47] Spatio-Temporal Information for Action Recognition in Thermal Video Using Deep Learning Model
    Srihari, P.
    Harikiran, J.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 669 - 680
  • [48] Using deep learning for precipitation forecasting based on spatio-temporal information: a case study
    Weide Li
    Xi Gao
    Zihan Hao
    Rong Sun
    Climate Dynamics, 2022, 58 : 443 - 457
  • [49] Using deep learning for precipitation forecasting based on spatio-temporal information: a case study
    Li, Weide
    Gao, Xi
    Hao, Zihan
    Sun, Rong
    CLIMATE DYNAMICS, 2022, 58 (1-2) : 443 - 457
  • [50] COVID-19 Spatio-Temporal Evolution Using Deep Learning at a European Level
    Kavouras, Ioannis
    Kaselimi, Maria
    Protopapadakis, Eftychios
    Bakalos, Nikolaos
    Doulamis, Nikolaos
    Doulamis, Anastasios
    SENSORS, 2022, 22 (10)