TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [21] Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning
    Jimenez-Navarro, M. J.
    Martinez-Ballesteros, M.
    Martinez-Alvarez, F.
    Asencio-Cortes, G.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 15 - 26
  • [22] Adaptive Context Based Road Accident Risk Prediction Using Spatio-Temporal Deep Learning
    Bhardwaj N.
    Pal A.
    Bhumika
    Das D.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2872 - 2883
  • [23] Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Ajila, Samuel A.
    Zaman, Marzia
    Naik, Kshirasagar
    Purcell, Richard
    Sampalli, Srinivas
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 346 - 351
  • [24] A spatio-temporal decomposition based deep neural network for time series forecasting
    Asadi, Reza
    Regan, Amelia C.
    APPLIED SOFT COMPUTING, 2020, 87
  • [25] Workload Characterization of a Time-Series Prediction System for Spatio-Temporal Data
    Jain, Milan
    Ghosh, Sayan
    Nandanoori, Sai Pushpak
    PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2022 (CF 2022), 2022, : 159 - 168
  • [26] TADST: reconstruction with spatio-temporal feature fusion for deviation-based time series anomaly detection
    Yang, Bin
    Ma, Tinghuai
    Rong, Huan
    Huang, Xuejian
    Wang, Yubo
    Zhao, Bowen
    Wang, Chaoming
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [27] TADST: reconstruction with spatio-temporal feature fusion for deviation-based time series anomaly detectionTADST: reconstruction with spatio-temporal feature fusion for deviation-based time series anomaly...B. Yang et al.
    Bin Yang
    Tinghuai Ma
    Huan Rong
    Xuejian Huang
    Yubo Wang
    Bowen Zhao
    Chaoming Wang
    Applied Intelligence, 2025, 55 (6)
  • [28] Bus Travel-Time Prediction Based on Deep Spatio-Temporal Model
    Zhang, Kaixin
    Lai, Yongxuan
    Jiang, Liying
    Yang, Fan
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 369 - 383
  • [29] Improvement of Typhoon Intensity Forecasting by Using a Novel Spatio-Temporal Deep Learning Model
    Jiang, Shuailong
    Fan, Hanjie
    Wang, Chunzai
    REMOTE SENSING, 2022, 14 (20)
  • [30] Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction
    Zhang, Lei
    Li, Dong
    Guo, Quansheng
    IEEE ACCESS, 2020, 8 : 66037 - 66047