TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] PyDTS: A Python']Python Toolkit for Deep Learning Time Series Modelling
    Schirmer, Pascal A.
    Mporas, Iosif
    ENTROPY, 2024, 26 (04)
  • [2] STMETRICS: A PYTHON']PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
    Soares, Anderson R.
    Bendini, Hugo N.
    Vaz, Daiane V.
    Uehara, Tatiana D. T.
    Neves, Alana K.
    Lechler, Sarah
    Korting, Thales S.
    Fonseca, Leila M. G.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2061 - 2064
  • [3] Creation of time series models based on deep learning for generation of probabilistic forecasts using GluonTS and Python']Python
    Cancino-Villatoro, Karina
    Solis, Alfredo Castillo
    Castillo-Estrada, Christian
    Juarez-Ramirez, Reyes
    2023 11TH INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING RESEARCH AND INNOVATION, CONISOFT 2023, 2023, : 265 - 274
  • [4] Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package)
    Christ, Maximilian
    Braun, Nils
    Neuffer, Julius
    Kempa-Liehr, Andreas W.
    NEUROCOMPUTING, 2018, 307 : 72 - 77
  • [5] Deep Learning Based Spatio-temporal mmWave Beam Prediction with Hierarchical Feature Mixing
    Wang, Hao
    Niu, Kai
    Dong, Chao
    Xue, Qiulin
    Li, Zhixi
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [6] Spatio-temporal water height prediction for dam break flows using deep learning
    Deng, Yangyu
    Zhang, Di
    Cao, Ze
    Liu, Yakun
    OCEAN ENGINEERING, 2024, 302
  • [7] Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: A deep learning approach
    Fu, Xianlei
    Zhang, Limao
    AUTOMATION IN CONSTRUCTION, 2021, 132
  • [8] Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models
    Nevavuori, Petteri
    Narra, Nathaniel
    Linna, Petri
    Lipping, Tarmo
    REMOTE SENSING, 2020, 12 (23) : 1 - 18
  • [9] Video-based driver emotion recognition using hybrid deep spatio-temporal feature learning
    Varma, Harshit
    Ganapathy, Nagarajan
    Deserno, Thomas M.
    MEDICAL IMAGING 2022: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2022, 12037
  • [10] Canopy height estimation from PlanetScope time series with spatio-temporal deep learning
    Dixon, Dan J.
    Zhu, Yunzhe
    Jin, Yufang
    REMOTE SENSING OF ENVIRONMENT, 2025, 318