On global convergence of alternating least squares for tensor approximation

被引:2
作者
Yang, Yuning [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Ctr Appl Math Guangxi, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor; Canonical polyadic decomposition; Alternating least squares; Block coordinate descent; Global convergence; COORDINATE DESCENT METHOD; RANK-ONE APPROXIMATION; LOCAL CONVERGENCE; POWER METHOD; DECOMPOSITIONS; OPTIMIZATION; ALGORITHMS; SEARCH; UNIQUENESS; COMPLEXITY;
D O I
10.1007/s10589-022-00428-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Alternating least squares is a classic, easily implemented, yet widely used method for tensor canonical polyadic approximation. Its subsequential and global convergence is ensured if the partial Hessians of the blocks during the whole sequence are uniformly positive definite. This paper shows that this positive definiteness assumption can be weakened in two ways. Firstly, if the smallest positive eigenvalues of the partial Hessians are uniformly positive, and the solutions of the subproblems are properly chosen, then global convergence holds. This allows the partial Hessians to be only positive semidefinite. Next, if at a limit point, the partial Hessians are positive definite, then global convergence also holds. We also discuss the connection of such an assumption to the uniqueness of exact CP decomposition.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 36 条
[21]   ON LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TENSOR TRAIN FORMAT [J].
Rohwedder, Thorsten ;
Uschmajew, Andre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :1134-1162
[22]   QUASI-NEWTON METHODS ON GRASSMANNIANS AND MULTILINEAR APPROXIMATIONS OF TENSORS [J].
Savas, Berkant ;
Lim, Lek-Heng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06) :3352-3393
[23]  
Sidiropoulos ND, 2000, J CHEMOMETR, V14, P229, DOI 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.3.CO
[24]  
2-E
[25]   Tensor Decomposition for Signal Processing and Machine Learning [J].
Sidiropoulos, Nicholas D. ;
De Lathauwer, Lieven ;
Fu, Xiao ;
Huang, Kejun ;
Papalexakis, Evangelos E. ;
Faloutsos, Christos .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (13) :3551-3582
[26]   Exact line and plane search for tensor optimization [J].
Sorber, Laurent ;
Domanov, Ignat ;
Van Barel, Marc ;
De Lathauwer, Lieven .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) :121-142
[27]   OPTIMIZATION-BASED ALGORITHMS FOR TENSOR DECOMPOSITIONS: CANONICAL POLYADIC DECOMPOSITION, DECOMPOSITION IN RANK-(Lr, Lr, 1) TERMS, AND A NEW GENERALIZATION [J].
Sorber, Laurent ;
Van Barel, Marc ;
De Lathauwer, Lieven .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) :695-720
[28]   Convergence of a block coordinate descent method for nondifferentiable minimization [J].
Tseng, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (03) :475-494
[29]  
Uschmajew A, 2015, PAC J OPTIM, V11, P309
[30]   LOCAL CONVERGENCE OF THE ALTERNATING LEAST SQUARES ALGORITHM FOR CANONICAL TENSOR APPROXIMATION [J].
Uschmajew, Andre .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (02) :639-652