On global convergence of alternating least squares for tensor approximation

被引:2
作者
Yang, Yuning [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Ctr Appl Math Guangxi, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor; Canonical polyadic decomposition; Alternating least squares; Block coordinate descent; Global convergence; COORDINATE DESCENT METHOD; RANK-ONE APPROXIMATION; LOCAL CONVERGENCE; POWER METHOD; DECOMPOSITIONS; OPTIMIZATION; ALGORITHMS; SEARCH; UNIQUENESS; COMPLEXITY;
D O I
10.1007/s10589-022-00428-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Alternating least squares is a classic, easily implemented, yet widely used method for tensor canonical polyadic approximation. Its subsequential and global convergence is ensured if the partial Hessians of the blocks during the whole sequence are uniformly positive definite. This paper shows that this positive definiteness assumption can be weakened in two ways. Firstly, if the smallest positive eigenvalues of the partial Hessians are uniformly positive, and the solutions of the subproblems are properly chosen, then global convergence holds. This allows the partial Hessians to be only positive semidefinite. Next, if at a limit point, the partial Hessians are positive definite, then global convergence also holds. We also discuss the connection of such an assumption to the uniqueness of exact CP decomposition.
引用
收藏
页码:509 / 529
页数:21
相关论文
共 36 条
[1]   Convergence of the iterates of descent methods for analytic cost functions [J].
Absil, PA ;
Mahony, R ;
Andrews, B .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :531-547
[2]   LOW COMPLEXITY DAMPED GAUSS-NEWTON ALGORITHMS FOR CANDECOMP/PARAFAC [J].
Anh-Huy Phan ;
Tichavsky, Petr ;
Cichocki, Andrzej .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (01) :126-147
[3]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[4]  
Bertsekas D.P., 1999, NONLINEAR PROGRAMMIN
[5]   New ALS Methods With Extrapolating Search Directions and Optimal Step Size for Complex-Valued Tensor Decompositions [J].
Chen, Yannan ;
Han, Deren ;
Qi, Liqun .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (12) :5888-5898
[6]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[7]   Tensor decompositions, alternating least squares and other tales [J].
Comon, P. ;
Luciani, X. ;
de Almeida, A. L. F. .
JOURNAL OF CHEMOMETRICS, 2009, 23 (7-8) :393-405
[8]   Tensors [A brief introduction] [J].
Comon, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (03) :44-53
[9]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127
[10]  
Espig M., 2015, ARXIV