From inexact optimization to learning via gradient concentration

被引:3
|
作者
Stankewitz, Bernhard [1 ]
Muecke, Nicole [2 ]
Rosasco, Lorenzo [3 ,4 ,5 ]
机构
[1] Humboldt Univ, Dept Math, Linden 6, D-10099 Berlin, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Stochast, Univ Pl 2, D-38106 Braunschweig, Lower Saxony, Germany
[3] Univ Genoa, DIBRIS, MaLGa, Via Dodecaneso 35, I-16146 Genoa, Italy
[4] MIT, CBMM, Genoa, Italy
[5] Inst Italiano Tecnol, Genoa, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Implicit regularization; Kernel methods; Statistical learning; CONVERGENCE; ALGORITHMS; REGRESSION;
D O I
10.1007/s10589-022-00408-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimization in machine learning typically deals with the minimization of empirical objectives defined by training data. The ultimate goal of learning, however, is to minimize the error on future data (test error), for which the training data provides only partial information. In this view, the optimization problems that are practically feasible are based on inexact quantities that are stochastic in nature. In this paper, we show how probabilistic results, specifically gradient concentration, can be combined with results from inexact optimization to derive sharp test error guarantees. By considering unconstrained objectives, we highlight the implicit regularization properties of optimization for learning.
引用
收藏
页码:265 / 294
页数:30
相关论文
共 50 条
  • [31] Inexact gradient projection method with relative error tolerance
    Aguiar, A. A.
    Ferreira, O. P.
    Prudente, L. F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 363 - 395
  • [32] Wireless Network Optimization via Stochastic Sub-gradient Descent: Rate Analysis
    Bedi, Amrit Singh
    Rajawat, Ketan
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
  • [33] S-NEAR-DGD: A Flexible Distributed Stochastic Gradient Method for Inexact Communication
    Iakovidou, Charikleia
    Wei, Ermin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 1281 - 1287
  • [34] Learning the kernel via convex optimization
    Kim, Seung-Jean
    Zymnis, Argyrios
    Magnani, Alessandro
    Koh, Kwangmoo
    Boyd, Stephen
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1997 - 2000
  • [35] Accelerating Federated Learning via Momentum Gradient Descent
    Liu, Wei
    Chen, Li
    Chen, Yunfei
    Zhang, Wenyi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (08) : 1754 - 1766
  • [36] Subgradient method with feasible inexact projections for constrained convex optimization problems
    Aguiar, A. A.
    Ferreira, O. P.
    Prudente, L. F.
    OPTIMIZATION, 2022, 71 (12) : 3515 - 3537
  • [37] Gradient learning in a classification setting by gradient descent
    Cai, Jia
    Wang, Hongyan
    Zhou, Ding-Xuan
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (02) : 674 - 692
  • [38] Learning Stochastic Optimal Policies via Gradient Descent
    Massaroli, Stefano
    Poli, Michael
    Peluchetti, Stefano
    Park, Jinkyoo
    Yamashita, Atsushi
    Asama, Hajime
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1094 - 1099
  • [39] An inexact proximal regularization method for unconstrained optimization
    Armand, Paul
    Lankoande, Isai
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2017, 85 (01) : 43 - 59
  • [40] A nonmonotone inexact Newton method for unconstrained optimization
    Gao, Huan
    Zhang, Hai-Bin
    Li, Zhi-Bao
    Tadjouddine, Emmanuel
    OPTIMIZATION LETTERS, 2017, 11 (05) : 947 - 965