Meta-BN Net for few-shot learning

被引:4
作者
Gao, Wei [1 ]
Shao, Mingwen [1 ]
Shu, Jun [2 ]
Zhuang, Xinkai [1 ]
机构
[1] China Univ Petr, Sch Comp Sci, Qingdao 266580, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
meta-learning; few-shot learning; batch normalization;
D O I
10.1007/s11704-021-1237-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a lightweight network with an adaptive batch normalization module, called Meta-BN Net, for few-shot classification. Unlike existing few-shot learning methods, which consist of complex models or algorithms, our approach extends batch normalization, an essential part of current deep neural network training, whose potential has not been fully explored. In particular, a meta-module is introduced to learn to generate more powerful affine transformation parameters, known as sigma and beta, in the batch normalization layer adaptively so that the representation ability of batch normalization can be activated. The experimental results on miniImageNet demonstrate that Meta-BN Net not only outperforms the baseline methods at a large margin but also is competitive with recent state-of-the-art few-shot learning methods. We also conduct experiments on Fewshot-CIFAR100 and CUB datasets, and the results show that our approach is effective to boost the performance of weak baseline networks. We believe our findings can motivate to explore the undiscovered capacity of base components in a neural network as well as more efficient few-shot learning methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Meta-BN Net for few-shot learning
    Wei Gao
    Mingwen Shao
    Jun Shu
    Xinkai Zhuang
    Frontiers of Computer Science, 2023, 17
  • [2] Meta-BN Net for few-shot learning
    Wei GAO
    Mingwen SHAO
    Jun SHU
    Xinkai ZHUANG
    Frontiers of Computer Science, 2023, 17 (01) : 76 - 83
  • [3] Unsupervised meta-learning for few-shot learning
    Xu, Hui
    Wang, Jiaxing
    Li, Hao
    Ouyang, Deqiang
    Shao, Jie
    PATTERN RECOGNITION, 2021, 116
  • [4] META-LEARNING WITH ATTENTION FOR IMPROVED FEW-SHOT LEARNING
    Hou, Zejiang
    Walid, Anwar
    Kung, Sun-Yuan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2725 - 2729
  • [5] Meta-pruning: Learning to Prune on Few-Shot Learning
    Chu, Yan
    Liu, Keshi
    Jiang, Songhao
    Sun, Xianghui
    Wang, Baoxu
    Wang, Zhengkui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2024, 2024, 14884 : 74 - 85
  • [6] Few-Shot Learning on Graph Convolutional Network Based on Meta learning
    Liu X.-L.
    Feng L.
    Liao L.-X.
    Gong X.
    Su H.
    Wang J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 885 - 897
  • [7] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [8] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [9] FEW-SHOT ACOUSTIC EVENT DETECTION VIA META LEARNING
    Shi, Bowen
    Sun, Ming
    Puvvada, Krishna C.
    Kao, Chieh-Chi
    Matsoukas, Spyros
    Wang, Chao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 76 - 80
  • [10] Meta-learning for few-shot time series forecasting
    Xiao, Feng
    Liu, Lu
    Han, Jiayu
    Guo, Degui
    Wang, Shang
    Cui, Hai
    Peng, Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 325 - 341