Generating Robust Counterfactual Explanations

被引:1
作者
Guyomard, Victor [1 ,2 ]
Fessant, Francoise [1 ]
Guyet, Thomas [3 ]
Bouadi, Tassadit [2 ]
Termier, Alexandre [2 ]
机构
[1] Orange Innovat, Lannion, France
[2] Univ Rennes, CNRS, INRIA, IRISA, Rennes, France
[3] INRIA, AIstroSight, Paris, France
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT III | 2023年 / 14171卷
关键词
Counterfactual explanation; Robustness; Algorithmic recourse;
D O I
10.1007/978-3-031-43418-1_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactual explanations have become a mainstay of the XAI field. This particularly intuitive statement allows the user to understand what small but necessary changes would have to be made to a given situation in order to change a model prediction. The quality of a counterfactual depends on several criteria: realism, actionability, validity, robustness, etc. In this paper, we are interested in the notion of robustness of a counterfactual. More precisely, we focus on robustness to counterfactual input changes. This form of robustness is particularly challenging as it involves a trade-off between the robustness of the counterfactual and the proximity with the example to explain. We propose a new framework, CROCO, that generates robust counterfactuals while managing effectively this trade-off, and guarantees the user a minimal robustness. An empirical evaluation on tabular datasets confirms the relevance and effectiveness of our approach.
引用
收藏
页码:394 / 409
页数:16
相关论文
共 22 条
[11]  
Mishra S, 2023, Arxiv, DOI arXiv:2111.00358
[12]   Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations [J].
Mothilal, Ramaravind K. ;
Sharma, Amit ;
Tan, Chenhao .
FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, :607-617
[13]  
Pawelczyk M., 2021, C NEURAL INFORM PROC, P17
[14]  
Pawelczyk M., 2023, P INT C LEARNING REP
[15]   Learning Model-Agnostic Counterfactual Explanations for Tabular Data [J].
Pawelczyk, Martin ;
Broelemann, Klaus ;
Kasneci, Gjergji .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :3126-3132
[16]   FACE: Feasible and Actionable Counterfactual Explanations [J].
Poyiadzi, Rafael ;
Sokol, Kacper ;
Santos-Rodriguez, Raul ;
De Bie, Tijl ;
Flach, Peter .
PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, 2020, :344-350
[17]  
Rawal K, 2021, Arxiv, DOI arXiv:2012.11788
[18]  
Upadhyay S, 2021, ADV NEUR IN
[19]   Actionable Recourse in Linear Classification [J].
Ustun, Berk ;
Spangher, Alexander ;
Liu, Yang .
FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2019, :10-19
[20]   Interpretable Counterfactual Explanations Guided by Prototypes [J].
Van Looveren, Arnaud ;
Klaise, Janis .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II, 2021, 12976 :650-665