Generating Robust Counterfactual Explanations

被引:1
作者
Guyomard, Victor [1 ,2 ]
Fessant, Francoise [1 ]
Guyet, Thomas [3 ]
Bouadi, Tassadit [2 ]
Termier, Alexandre [2 ]
机构
[1] Orange Innovat, Lannion, France
[2] Univ Rennes, CNRS, INRIA, IRISA, Rennes, France
[3] INRIA, AIstroSight, Paris, France
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT III | 2023年 / 14171卷
关键词
Counterfactual explanation; Robustness; Algorithmic recourse;
D O I
10.1007/978-3-031-43418-1_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactual explanations have become a mainstay of the XAI field. This particularly intuitive statement allows the user to understand what small but necessary changes would have to be made to a given situation in order to change a model prediction. The quality of a counterfactual depends on several criteria: realism, actionability, validity, robustness, etc. In this paper, we are interested in the notion of robustness of a counterfactual. More precisely, we focus on robustness to counterfactual input changes. This form of robustness is particularly challenging as it involves a trade-off between the robustness of the counterfactual and the proximity with the example to explain. We propose a new framework, CROCO, that generates robust counterfactuals while managing effectively this trade-off, and guarantees the user a minimal robustness. An empirical evaluation on tabular datasets confirms the relevance and effectiveness of our approach.
引用
收藏
页码:394 / 409
页数:16
相关论文
共 22 条
[1]   Evaluating Robustness of Counterfactual Explanations [J].
Artelt, Andre ;
Vaquet, Valerie ;
Velioglu, Riza ;
Hinder, Fabian ;
Brinkrolf, Johannes ;
Schilling, Malte ;
Hammer, Barbara .
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
[2]   A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data [J].
Barbosa de Oliveira, Raphael Mazzine ;
Martens, David .
APPLIED SCIENCES-BASEL, 2021, 11 (16)
[3]  
Black E., 2022, P INT C LEARNING REP
[4]  
Brughmans Dieter, 2021, arXiv, DOI [DOI 10.48550/ARXIV.2104.07411, 10.48550/ARXIV.2104.07411]
[5]  
Dominguez-Olmedo R, 2022, PR MACH LEARN RES
[6]   The Robustness of Counterfactual Explanations Over Time [J].
Ferrario, Andrea ;
Loi, Michele .
IEEE ACCESS, 2022, 10 :82736-82750
[8]  
Guyomard V., 2022, P EUROPEAN C MACHINE, P437
[9]  
Laugel T, 2019, Arxiv, DOI arXiv:1906.04774
[10]  
Maragno D, 2023, Arxiv, DOI arXiv:2301.11113