Deep learning-based automatic segmentation of cardiac substructures for lung cancers

被引:12
作者
Chen, Xinru [1 ,2 ]
Mumme, Raymond P. [1 ]
Corrigan, Kelsey L. [3 ]
Mukai-Sasaki, Yuki [3 ,4 ]
Koutroumpakis, Efstratios [5 ]
Palaskas, Nicolas L. [5 ]
Nguyen, Callistus M. [1 ]
Zhao, Yao [1 ,2 ]
Huang, Kai [1 ,2 ]
Yu, Cenji [1 ,2 ]
Xu, Ting [3 ]
Daniel, Aji [1 ]
Balter, Peter A. [1 ,2 ]
Zhang, Xiaodong [1 ,2 ]
Niedzielski, Joshua S. [1 ,2 ]
Shete, Sanjay S. [2 ,6 ]
Deswal, Anita [5 ]
Court, Laurence E. [1 ,2 ]
Liao, Zhongxing [3 ]
Yang, Jinzhong [1 ,2 ,7 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, UTHealth Houston Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[4] Shonan Kamakura Gen Hosp, Adv Med Ctr, Kamakura, Japan
[5] Univ Texas MD Anderson Canc Ctr, Dept Cardiol, Houston, TX 77030 USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Div Radiat Oncol, 1400 Pressler St, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
Lung cancer; Radiotherapy; Neural networks; Auto-segmentation; Coronary arteries; CORONARY-ARTERY; WHOLE HEART; RADIATION-THERAPY; RADIOTHERAPY; TOXICITY; RISK; DISEASE; ATLAS; VALIDATION; DOSIMETRY;
D O I
10.1016/j.radonc.2023.110061
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Accurate and comprehensive segmentation of cardiac substructures is crucial for minimizing the risk of radiation-induced heart disease in lung cancer radiotherapy. We sought to develop and validate deep learning-based auto-segmentation models for cardiac substructures. Materials and Methods: Nineteen cardiac substructures (whole heart, 4 heart chambers, 6 great vessels, 4 valves, and 4 coronary arteries) in 100 patients treated for non-small cell lung cancer were manually delineated by two radiation oncologists. The valves and coronary arteries were delineated as planning risk volumes. An nnU-Net auto-segmentation model was trained, validated, and tested on this dataset with a split ratio of 75:5:20. The auto-segmented contours were evaluated by comparing them with manually drawn contours in terms of Dice similarity coefficient (DSC) and dose metrics extracted from clinical plans. An independent dataset of 42 patients was used for subjective evaluation of the auto-segmentation model by 4 physicians. Results: The average DSCs were 0.95 (+/- 0.01) for the whole heart, 0.91 (+/- 0.02) for 4 chambers, 0.86 (+/- 0.09) for 6 great vessels, 0.81 (+/- 0.09) for 4 valves, and 0.60 (+/- 0.14) for 4 coronary arteries. The average absolute errors in mean/max doses to all substructures were 1.04 (+/- 1.99) Gy and 2.20 (+/- 4.37) Gy. The subjective evaluation revealed that 94% of the auto-segmented contours were clinically acceptable. Conclusion: We demonstrated the effectiveness of our nnU-Net model for delineating cardiac substructures, including coronary arteries. Our results indicate that this model has promise for studies regarding radiation dose to cardiac substructures.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Association of Left Anterior Descending Coronary Artery Radiation Dose With Major Adverse Cardiac Events and Mortality in Patients With Non-Small Cell Lung Cancer [J].
Atkins, Katelyn M. ;
Chaunzwa, Tafadzwa L. ;
Lamba, Nayan ;
Bitterman, Danielle S. ;
Rawal, Bhupendra ;
Bredfeldt, Jeremy ;
Williams, Christopher L. ;
Kozono, David E. ;
Baldini, Elizabeth H. ;
Nohria, Anju ;
Hoffmann, Udo ;
Aerts, Hugo J. W. L. ;
Mak, Raymond H. .
JAMA ONCOLOGY, 2021, 7 (02) :206-219
[2]   Cardiac Radiation Dose, Cardiac Disease, and Mortality in Patients With Lung Cancer [J].
Atkins, Katelyn M. ;
Rawal, Bhupendra ;
Chaunzwa, Tafadzwa L. ;
Lamba, Nayan ;
Bitterman, Danielle S. ;
Williams, Christopher L. ;
Kozono, David E. ;
Baldini, Elizabeth H. ;
Chen, Aileen B. ;
Nguyen, Paul L. ;
D'Amico, Anthony V. ;
Nohria, Anju ;
Hoffmann, Udo ;
Aerts, Hugo J. W. L. ;
Mak, Raymond H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (23) :2976-2987
[3]  
Becker-Schiebe M, 2016, STRAHLENTHER ONKOL, V192, P624, DOI 10.1007/s00066-016-1011-y
[4]   Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study [J].
Bradley, Jeffrey D. ;
Paulus, Rebecca ;
Komaki, Ritsuko ;
Masters, Gregory ;
Blumenschein, George ;
Schild, Steven ;
Bogart, Jeffrey ;
Hu, Chen ;
Forster, Kenneth ;
Magliocco, Anthony ;
Kavadi, Vivek ;
Garces, Yolanda I. ;
Narayan, Samir ;
Iyengar, Puneeth ;
Robinson, Cliff ;
Wynn, Raymond B. ;
Koprowski, Christopher ;
Meng, Joanne ;
Beitler, Jonathan ;
Gaur, Rakesh ;
Curran, Walter, Jr. ;
Choy, Hak .
LANCET ONCOLOGY, 2015, 16 (02) :187-199
[5]   Validation of a Fully Automated Hybrid Deep Learning Cardiac Substructure Segmentation Tool for Contouring and Dose Evaluation in Lung Cancer Radiotherapy [J].
Chin, V. ;
Finnegan, R. N. ;
Chlapy, P. ;
Otton, J. ;
Haidar, A. ;
Holloway, L. ;
Thwaites, D. I. ;
Dowling, J. ;
Delaney, G. P. ;
Vinod, S. K. .
CLINICAL ONCOLOGY, 2023, 35 (06) :370-381
[6]  
Chlap P., 2023, J Open Source Softw, V8, P5374, DOI [10.21105/joss.05374, DOI 10.21105/JOSS.05374]
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]  
Cutter DJ, 2015, JNCI-J NATL CANCER I, V107, DOI [10.1016/j.asams.2015.03.009, 10.1093/jnci/djv008]
[9]   Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer [J].
Darby, Sarah C. ;
Ewertz, Marianne ;
McGale, Paul ;
Bennet, Anna M. ;
Blom-Goldman, Ulla ;
Bronnum, Dorthe ;
Correa, Candace ;
Cutter, David ;
Gagliardi, Giovanna ;
Gigante, Bruna ;
Jensen, Maj-Britt ;
Nisbet, Andrew ;
Peto, Richard ;
Rahimi, Kazem ;
Taylor, Carolyn ;
Hall, Per .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (11) :987-998
[10]   Intra- and inter-physician variability in target volume delineation in radiation therapy [J].
Das, Indra J. ;
Compton, Julia J. ;
Bajaj, Amishi ;
Johnstone, Peter A. .
JOURNAL OF RADIATION RESEARCH, 2021, 62 (06) :1083-1089