A Vectorized Representation Model for Trajectory Prediction of Intelligent Vehicles in Challenging Scenarios

被引:15
作者
Guo, Lulu [1 ]
Shan, Ce [1 ]
Shi, Tengfei [2 ]
Li, Xuan [3 ]
Wang, Fei-Yue [4 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2023年 / 8卷 / 10期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Index Terms-Autonomous vehicles; graph neural network; HD maps; OpenSCENARIO; scenarios engineering; trajectory prediction;
D O I
10.1109/TIV.2023.3317032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory prediction for challenging scenarios has always been a significant problem in the field due to the complexity of dynamic scenarios and interactions. Furthermore, there is often a dynamic gap between evaluating and validating methods on fixed datasets and real driving scenarios. This letter forms part of a series of reports emanating from the IEEE Transactions on Intelligent Vehicles's Decentralized and Hybrid Workshops (DHW) dedicated to the field of Scenarios Engineering. Our research proposes a scenario engineering-based calibration and validation framework for trajectory prediction of autonomous vehicles to more effectively validate the performance of the method in challenging scenarios. First, Scenarios Engineering (SE) uses OpenSCENARIO and real dataset to generate high-definition maps for challenging driving scenarios. Then, the vectorization approach is employed to extract contextual details from the scene and agent trajectory information from the HD map, and the graph neural network is used to model the high-order interaction to realize the interactive trajectory prediction. Compared with the traditional method, the trajectory prediction can be calibrated through SE so that the prediction process can use more traffic information and attribute characteristics, and improve the evaluation index of prediction. The DHW discusses a practical case to verify the potential of the trajectory prediction framework based on scenarios generation in improving the authenticity and accuracy of trajectory prediction.
引用
收藏
页码:4301 / 4306
页数:6
相关论文
共 31 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Model-Based Probabilistic Collision Detection in Autonomous Driving [J].
Althoff, Matthias ;
Stursberg, Olaf ;
Buss, Martin .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009, 10 (02) :299-310
[3]   Real time trajectory prediction for collision risk estimation between vehicles [J].
Ammoun, Samer ;
Nashashibi, Fawzi .
2009 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, PROCEEDINGS, 2009, :417-+
[4]   Future Directions of Intelligent Vehicles: Potentials, Possibilities, and Perspectives [J].
Cao, Dongpu ;
Wang, Xiao ;
Li, Lingxi ;
Lv, Chen ;
Na, Xiaoxiang ;
Xing, Yang ;
Li, Xuan ;
Li, Ying ;
Chen, Yuanyuan ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (01) :7-10
[5]  
Chai Yuning., 2020, CORL, P86
[6]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[7]   Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys [J].
Chen, Long ;
Li, Yuchen ;
Huang, Chao ;
Li, Bai ;
Xing, Yang ;
Tian, Daxin ;
Li, Li ;
Hu, Zhongxu ;
Na, Xiaoxiang ;
Li, Zixuan ;
Teng, Siyu ;
Lv, Chen ;
Wang, Jinjun ;
Cao, Dongpu ;
Zheng, Nanning ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1046-1056
[8]   Convolutional Social Pooling for Vehicle Trajectory Prediction [J].
Deo, Nachiket ;
Trivedi, Mohan M. .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1549-1557
[9]   How Would Surround Vehicles Move? A Unified Framework for Maneuver Classification and Motion Prediction [J].
Deo, Nachiket ;
Rangesh, Akshay ;
Trivedi, Mohan M. .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2018, 3 (02) :129-140
[10]   VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation [J].
Gao, Jiyang ;
Sun, Chen ;
Zhao, Hang ;
Shen, Yi ;
Anguelov, Dragomir ;
Li, Congcong ;
Schmid, Cordelia .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11522-11530