EIGENVALUE BOUNDS FOR SCHRoDINGER OPERATORS WITH RANDOM COMPLEX POTENTIALS

被引:0
作者
Safronoy, Oleg [1 ]
机构
[1] Univ North Carolina Charlotte, Math & Stat, Charlotte, NC 28223 USA
来源
ANALYSIS & PDE | 2023年 / 16卷 / 04期
关键词
Schrodinger operators; complex potentials; eigenvalue bounds; LIEB-THIRRING INEQUALITIES;
D O I
10.2140/apde.2023.16.1033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Schrodinger operator perturbed by a random complex-valued potential. For this operator, we consider its eigenvalues situated in the unit disk. We obtain an estimate on the rate of accumulation of these eigenvalues to the positive half-line.
引用
收藏
页码:1033 / 1060
页数:32
相关论文
共 26 条
  • [1] Bounds on complex eigenvalues and resonances
    Abramov, AA
    Aslanyan, A
    Davies, EB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01): : 57 - 72
  • [2] Schrodinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues
    Boegli, Sabine
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (02) : 629 - 639
  • [3] A Blaschke-type condition and its application to complex Jacobi matrices
    Borichev, A.
    Golinskii, L.
    Kupin, S.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 117 - 123
  • [4] Lieb-Thirring inequalities for an effective Hamiltonian of bilayer graphene
    Briet, Philippe
    Cuenin, Jean-Claude
    Golinskii, Leonid
    Kupin, Stanislas
    [J]. JOURNAL OF SPECTRAL THEORY, 2021, 11 (03) : 1145 - 1178
  • [5] Eigenvalue bounds for Dirac and fractional Schrodinger operators with complex potentials
    Cuenin, Jean-Claude
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (07) : 2987 - 3018
  • [6] Eigenvalue Estimates for Non-Selfadjoint Dirac Operators on the Real Line
    Cuenin, Jean-Claude
    Laptev, Ari
    Tretter, Christiane
    [J]. ANNALES HENRI POINCARE, 2014, 15 (04): : 707 - 736
  • [7] Schrodinger operators with slowly decaying potentials
    Davies, EB
    Nath, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) : 1 - 28
  • [8] Eigenvalue inequalities in terms of schatten norm bounds on differences of semigroups, and application to Schrodinger operators
    Demuth, Michael
    Katriel, Guy
    [J]. ANNALES HENRI POINCARE, 2008, 9 (04): : 817 - 834
  • [9] On the discrete spectrum of non-selfadjoint operators
    Demuth, Michael
    Hansmann, Marcel
    Katriel, Guy
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (09) : 2742 - 2759
  • [10] Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials
    Frank, Rupert L.
    Laptev, Ari
    Lieb, Elliott H.
    Seiringer, Robert
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) : 309 - 316