Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency

被引:151
|
作者
Chen, Zhenyu [1 ,2 ]
Zhu, Jintao [3 ]
Yang, Daobin [1 ,2 ]
Song, Wei [1 ,2 ]
Shi, Jingyu [1 ,2 ]
Ge, Jinfeng [1 ,2 ]
Guo, Yuntong [1 ]
Tong, Xinyu [1 ,2 ]
Chen, Fei [3 ]
Ge, Ziyi [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Engn Res Ctr Energy Optoelect Mat & Devic, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Nottingham Ningbo China, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
OPEN-CIRCUIT VOLTAGE; RECOMBINATION LOSS; DISPERSION; ENERGY;
D O I
10.1039/d3ee01164j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The strategy of isomerization plays a simple and effective role in optimizing the molecular configurations and improving the performance of binary organic solar cells (OSCs). However, the effect of isomerization in guest materials on ternary OSCs has rarely been reported, and their structure-property relationships are not yet clearly understood. Herein, two large & pi;-conjugated isomers, QX-& alpha; and QX-& gamma;, with different orientations of their fused thiophene-rings were designed and synthesized to investigate the influence of isomers in non-fullerene guest acceptors on the photovoltaic properties in a D18:N3 host system. Compared to QX-& gamma;, QX-& alpha; demonstrated a stronger dipole moment, a more ordered stacking, and a higher surface energy due to the presence of SMIDLINE HORIZONTAL ELLIPSISN non-covalent interactions. As a result, the OSCs device based on D18:N3:QX-& alpha; achieved the higher efficiency of 19.33%, while the device based on D18:N3:QX-& gamma; exhibited an efficiency of only 18.30%. Remarkably, the flexible OSC based on D18:N3:QX-& alpha; produced an outstanding PCE of 18.01%, which is a record PCE for flexible OSCs. In addition, the ternary device showed a significant increase in efficiency retention from 49% to 87% after 476 h of storage in a N-2-filled glove box at 85 & DEG;C compared to the binary device. Moreover, the extrapolated T-80 lifetime of the D18:N3:QX-& alpha;-based ternary device was as high as over 17 000 h in a glove box at room temperature. The results indicate that rational tuning of the atomic orientation can be an effective way to construct non-fullerene guest acceptors for achieving highly efficient and stable OSCs.
引用
收藏
页码:3119 / 3127
页数:9
相关论文
共 50 条
  • [21] Research Progress of Non-Fullerene Small-Molecule Acceptor Materials for Organic Solar Cells
    Fu Yu
    Wang Fang
    Zhang Yan
    Fang Xu
    Lai Wenyong
    Huang Wei
    ACTA CHIMICA SINICA, 2014, 72 (02) : 158 - 170
  • [22] A new non-fullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells
    Luo, Mei
    Zhou, Liuyang
    Yuan, Jun
    Zhu, Can
    Cai, Fangfang
    Hai, Jiefeng
    Zou, Yingping
    JOURNAL OF ENERGY CHEMISTRY, 2020, 42 (42): : 169 - 173
  • [23] Fluorene-centered perylene monoimides as potential non-fullerene acceptor in organic solar cells
    Zhang, Youdi
    Xiao, Yi
    Xie, Yuanpeng
    Zhu, Linlin
    Shi, Dequan
    Cheng, Chuanhui
    ORGANIC ELECTRONICS, 2015, 21 : 184 - 191
  • [24] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [25] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128
  • [26] Tuning Voc for high performance organic ternary solar cells with non-fullerene acceptor alloys
    Chen, Yusheng
    Ye, Pan
    Jia, Xiangli
    Gu, Wenxing
    Xu, Xiaozhou
    Wu, Xiaoxi
    Wu, Jianfei
    Liu, Feng
    Zhu, Zhen-Gang
    Huang, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19697 - 19702
  • [27] Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%
    Yuan, Jun
    Qiu, Lixia
    Zhang, Zhi-Guo
    Li, Yongfang
    Chen, Yiwang
    Zou, Yingping
    NANO ENERGY, 2016, 30 : 312 - 320
  • [28] Photo-degradation in bulk heterojunction organic solar cells using a fullerene or a non-fullerene derivative electron acceptor
    Labiod, Amina
    Ibraikulov, Olzhas A.
    Dabos-Seignon, Sylvie
    Ferry, Stephanie
    Heinrich, Benoit
    Mery, Stephane
    Fall, Sadiara
    Nkuissi, Herve J. Tchognia
    Heiser, Thomas
    Cabanetos, Clement
    Leclerc, Nicolas
    Leveque, Patrick
    ORGANIC ELECTRONICS, 2022, 107
  • [29] A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor
    Zhang, Li-Peng
    Zhao, Wenchao
    Liu, Xiaoyu
    Jiang, Ke-Jian
    Li, Feng-Ting
    Hou, Jianhui
    Yang, Lian-Ming
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (18) : 10237 - 10244
  • [30] Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells
    Mondelli, Pierluigi
    Kaienburg, Pascal
    Silvestri, Francesco
    Scatena, Rebecca
    Welton, Claire
    Grandjean, Martine
    Lemaur, Vincent
    Solano, Eduardo
    Nyman, Mathias
    Horton, Peter N.
    Coles, Simon J.
    Barrena, Esther
    Riede, Moritz
    Radaelli, Paolo
    Beljonne, David
    Reddy, G. N. Manjunatha
    Morse, Graham
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (30) : 16263 - 16278