Free Electron Dynamics and Intrinsic Mobility in Ga2O3 Revealed by Transient Terahertz Conductivity

被引:4
作者
Yang, Zhangqiang [1 ]
Xu, Xiangyu [1 ]
Zhang, Kelvin H. L. [1 ,2 ]
Yang, Ye [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCONDUCTIVITY; GAAS;
D O I
10.1021/acs.jpclett.3c00884
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we investigate the photoconductivity of gallium oxide thin films at different temperatures using time-resolved terahertz spectroscopy. The photogenerated electrons in the conduction band show a monoexponential decay, implying a first-order electron depopulation mechanism. The electron lifetime increases with rising temperature, and this trend coincides with the temperature dependence of the electron mobility rather than diffusion coefficient, suggesting that electron-hole recombination is determined by directional electron drift instead of random diffusion. The electron mobilities extracted from the transient terahertz conductivity are substantially greater than the previously reported Hall mobilities over a wide temperature range, and this is probably because the electron drift in response to the terahertz field is immune from scattering with macroscopic defects. Thus, the mobilities measured here may represent the intrinsic limit of the electron mobility in gallium oxide crystals. Our finding suggests that the current Hall mobility in this wide bandgap semiconductor is still far below the limit, and the long-range electron transport can be further increased by improving the crystalline quality.
引用
收藏
页码:4419 / 4425
页数:7
相关论文
共 50 条
[41]   β-Ga2O3 Schottky barrier height improvement using Ar/O2 plasma and HF surface treatments [J].
Sharma, Pooja ;
Lodha, Saurabh .
APPLIED PHYSICS LETTERS, 2024, 124 (07)
[42]   Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma [J].
Donmez, Inci ;
Ozgit-Akgun, Cagla ;
Biyikli, Necmi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (01)
[43]   In situ etching of β-Ga2O3 using tert-butyl chloride in an MOCVD system [J].
Gorsak, Cameron A. ;
Bowman, Henry J. ;
Gann, Katie R. ;
Buontempo, Joshua T. ;
Smith, Kathleen T. ;
Tripathi, Pushpanshu ;
Steele, Jacob ;
Jena, Debdeep ;
Schlom, Darrell G. ;
Xing, Huili Grace ;
Thompson, Michael O. ;
Nair, Hari P. .
APPLIED PHYSICS LETTERS, 2024, 125 (24)
[44]   Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg [J].
Luchechko, A. ;
Vasyltsiv, V. ;
Kostyk, L. ;
Tsvetkova, O. ;
Popov, A., I .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 441 :12-17
[45]   Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy [J].
Wagner, Guenter ;
Baldini, Michele ;
Gogova, Daniela ;
Schmidbauer, Martin ;
Schewski, Robert ;
Albrecht, Martin ;
Galazka, Zbigniew ;
Klimm, Detlef ;
Fornari, Roberto .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01) :27-33
[46]   Effect of inert components (Y2O3, Al2O3, and Ga2O3) on the chemistimulating effect of the Sb2O3 activator of GaAs thermal oxidation [J].
P. K. Penskoi ;
V. F. Kostryukov ;
S. V. Kutsev ;
I. V. Kuznetsova ;
V. R. Pshestanchik ;
I. Ya. Mittova .
Russian Journal of Inorganic Chemistry, 2009, 54 :1564-1570
[47]   Novel Ga2O3(Gd2O3) passivation techniques to produce low D-it oxide-GaAs interfaces [J].
Hong, M ;
Mannaerts, JP ;
Bower, JE ;
Kwo, J ;
Passlack, M ;
Hwang, WY ;
Tu, LW .
JOURNAL OF CRYSTAL GROWTH, 1997, 175 :422-427
[48]   Growth of β-Ga2O3 Single-Crystal Microbelts by the Optical Vapor Supersaturated Precipitation Method [J].
Pan, Yongman ;
Wang, Qiang ;
Yan, Yinzhou ;
Yang, Lixue ;
Wan, Lingyu ;
Yao, Rongcheng ;
Jiang, Yijian .
CRYSTALS, 2023, 13 (05)
[49]   Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method [J].
Tien Dai Nguyen ;
Eui Tae Kim ;
Khac An Dao .
Journal of Materials Science: Materials in Electronics, 2015, 26 :8747-8752
[50]   A nanoanalytical investigation of the Ga2O3/GaGdO dielectric gate stack for InGaAs based MOSFET devices [J].
Longo, P. ;
Paterson, G. W. ;
Holland, M. C. ;
Thayne, I. G. ;
Craven, A. J. .
MICROELECTRONIC ENGINEERING, 2009, 86 (7-9) :1568-1570