Super-Elastic Carbonized Mushroom Aerogel for Management of Uncontrolled Hemorrhage

被引:29
作者
Yang, Ganghua [1 ,2 ]
Huang, Zhenzhen [2 ]
McCarthy, Alec [3 ,4 ]
Huang, Yueyue [5 ,6 ]
Pan, Jingye [5 ,6 ]
Chen, Shixuan [2 ]
Wan, Wenbing [1 ]
机构
[1] Nanchang Univ, Affiliated Hosp 2, Dept Orthopaed Surg, Nanchang 330006, Jiangxi, Peoples R China
[2] Univ Chinese Acad Sci, Wenzhou Inst, Zhejiang Engn Res Ctr Tissue Repair Mat, Wenzhou 325000, Zhejiang, Peoples R China
[3] Univ Nebraska Med Ctr, Dept Surg Transplant & Mary, Omaha, NE 68198 USA
[4] Univ Nebraska Med Ctr, Mary & Dick Holland Regenerat Med Program, Omaha, NE 68198 USA
[5] Wenzhou Med Univ, Affiliated Hosp 1, Key Lab Intelligent Treatment & Life Support Crit, Wenzhou 325000, Zhejiang, Peoples R China
[6] Wenzhou Med Univ, Affiliated Hosp 1, Zhejiang Engn Res Ctr Hosp Emergency & Proc Digiti, Wenzhou 325000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
cellulose; hemostatic materials; platelet activation; porous structure; uncontrolled hemorrhage; RAPID SHAPE RECOVERY; NONCOMPRESSIBLE HEMORRHAGE; HEMOSTATIC EFFICACY; SPONGE;
D O I
10.1002/advs.202207347
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uncontrolled hemorrhage is still the most common cause of potentially preventable death after trauma in prehospital settings. However, there rarely are hemostatic materials that can achieve safely and efficiently rapid hemostasis simultaneously. Here, new carbonized cellulose-based aerogel hemostatic material is developed for the management of noncompressible torso hemorrhage, the most intractable issue of uncontrolled hemorrhage. The carbonized cellulose aerogel is derived from the Agaricus bisporus after a series of processing, including cutting, carbonization, purification, and freeze-drying. In vitro, the carbonized cellulose aerogels with porous structure show improved hydrophilicity, good blood absorption, and coagulation ability, rapid shape recoverable ability under wet conditions. And in vivo, the carbonized aerogels show effective hemostatic ability in both small and big animal serious hemorrhage models. The amount of blood loss and the hemostatic time of carbonized aerogels are all better than the positive control group. Moreover, the mechanism studies reveal that the good hemostatic ability of the carbonized cellulose aerogel is associated with high hemoglobin binding efficiency, red blood cell absorption, and platelets absorption and activation. Together, the carbonized aerogel developed in this study could be promising for the management of uncontrolled hemorrhage.
引用
收藏
页数:17
相关论文
共 46 条
[11]   Hemostatic dressings based on poly(vinyl formal) sponges [J].
Goncharuk, O. ;
Korotych, O. ;
Samchenko, Yu ;
Kernosenko, L. ;
Kravchenko, A. ;
Shtanova, L. ;
Tsymbalyuk, O. ;
Poltoratska, T. ;
Pasmurtseva, N. ;
Mamyshev, I ;
Pakhlov, E. ;
Siryk, O. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 129
[12]   Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying [J].
Grenier, Jerome ;
Duval, Herve ;
Barou, Fabrice ;
Lv, Pin ;
David, Bertrand ;
Letourneur, Didier .
ACTA BIOMATERIALIA, 2019, 94 :195-203
[13]   Graphene oxide-gelatin aerogels as wound dressings with improved hemostatic properties [J].
Guajardo, S. ;
Figueroa, T. ;
Borges, J. ;
Aguayo, C. ;
Fernandez, K. .
MATERIALS TODAY CHEMISTRY, 2021, 20
[14]   Haemostatic materials for wound healing applications [J].
Guo, Baolin ;
Dong, Ruonan ;
Bang, Yongping ;
Li, Meng .
NATURE REVIEWS CHEMISTRY, 2021, 5 (11) :773-791
[15]   Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications [J].
Gupta, Abhishek ;
Briffa, Sophie M. ;
Swingler, Sam ;
Gibson, Hazel ;
Kannappan, Vinodh ;
Adamus, Grazyna ;
Kowalczuk, Marek ;
Martin, Claire ;
Radecka, Iza .
BIOMACROMOLECULES, 2020, 21 (05) :1802-1811
[16]   Characterization of cellulose based sponges for wound dressings [J].
Gustaite, Sandra ;
Kazlauske, J. ;
Bobokalonov, J. ;
Perni, Stefano ;
Dutschk, Victoria ;
Liesiene, J. ;
Prokopovich, Polina .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 480 :336-342
[17]   Nanofibrillar cellulose wound dressing in skin graft donor site treatment [J].
Hakkarainen, T. ;
Koivuniemi, R. ;
Kosonen, M. ;
Escobedo-Lucea, C. ;
Sanz-Garcia, A. ;
Vuola, J. ;
Valtonen, J. ;
Tammela, P. ;
Makitie, A. ;
Luukko, K. ;
Yliperttula, M. ;
Kavola, H. .
JOURNAL OF CONTROLLED RELEASE, 2016, 244 :292-301
[18]   Cellulose-Based Biomaterials: Chemistry and Biomedical Applications [J].
Hasanin, Mohamed S. .
STARCH-STARKE, 2022, 74 (7-8)
[19]   Cellulose Biomaterials for Tissue Engineering [J].
Hickey, Ryan J. ;
Pelling, Andrew E. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (MAR)
[20]   Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding [J].
Hickman, DaShawn A. ;
Pawlowski, Christa L. ;
Sekhon, Ujjal D. S. ;
Marks, Joyann ;
Sen Gupta, Anirban .
ADVANCED MATERIALS, 2018, 30 (04)