Optimization of CdZnyS1-y Buffer Layer Properties for a ZnO/CZTSxSe1-x/Mo Solar Cell to Enhance Conversion Efficiency

被引:6
作者
Boubakeur, M. [1 ]
Aissat, A. [1 ,3 ]
Chenini, L. [1 ]
Ben Arbia, M. [2 ]
Maaref, H. [2 ]
Vilcot, J. P. [3 ]
机构
[1] Univ Blida 1, Fac Technol, Blida 09000, Algeria
[2] Univ Monastir, Fac Sci Monastir, Dept Phys, Lab Microoptoelect & Nanostruct, Ave Environm, Monastir 5019, Tunisia
[3] Univ Sci & Technol Lille, Inst Elect Microelect & Nanotechnol IEMN, UMR CNRS 8520, 1 Ave Poincare,BP 60069, F-59652 Villeneuve Dascq, France
关键词
New materials; semiconductors; thin film; solar cell; optoelectronic; SIMULATION;
D O I
10.1007/s11664-022-09986-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we focus on optimizing the solar performance of a CZTSSe-based solar cell by adjusting the zinc and sulfur concentrations in the CdZnS buffer layer and the quinary absorber CZTSSe. The state-of-the-art work is to combine the ZnS and CdS binaries into CdZnS ternary used as a buffer layer in both CZTS- and CZTSSe-based solar cells. An overall study of its properties is carried out taking into account the strain present at the heterointerface, defect density, bandgap energy and the interface state density. As a result, the highest efficiency eta = 14.59% was achieved with a sulfur content of 0.55 and a zinc content of 0.70 to bandgap energies of 1.25 and 3.12 eV for CZTSSe and CdZnS materials, respectively. Our simulation is validated by the reproducibility of solar cell performance under the same conditions, and an enhancement of the conversion efficiency of about Delta eta = 5.55% will be achieved when the CdS layer is replaced by CdZnS in the ZnO/CdS/CZTSSe/Mo/Glass solar device.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 29 条
  • [1] Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell
    Aissat, A.
    Arbouz, H.
    Vilcot, J. P.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 : 381 - 385
  • [2] Investigation of 1.9 μm GINA Simulated as Intrinsic Layer in a GaAs Homojunction: From 25% Towards 32.4% Conversion Yield
    Arbia, Marwa Ben
    Helal, Hicham
    Saidi, Faouzi
    Maaref, Hassen
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (11) : 6308 - 6316
  • [3] Physical properties of Al-doped ZnS thin films prepared by ultrasonic spray technique
    Benamra, H.
    Saidi, H.
    Attaf, A.
    Aida, M. S.
    Derbali, A.
    Attaf, N.
    [J]. SURFACES AND INTERFACES, 2020, 21
  • [4] Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications
    Boubakeur, M.
    Aissat, A.
    Ben Arbia, M.
    Maaref, H.
    Vilcot, J. P.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2020, 138
  • [5] Modeling thin-film PV devices
    Burgelman, M
    Verschraegen, J
    Degrave, S
    Nollet, P
    [J]. PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 143 - 153
  • [6] Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells
    Chadel, Meriem
    Chadel, Asma
    Bouzaki, Mohammed Moustafa
    Aillerie, Michel
    Benyoucef, Boumediene
    Charles, Jean-Pierre
    [J]. MATERIALS RESEARCH EXPRESS, 2017, 4 (11):
  • [7] Optimization of inter-subband absorption of InGaAsSb/GaAs quantum wells structure
    Chenini, L.
    Aissat, A.
    Vilcot, J. P.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2019, 129 : 115 - 123
  • [8] Study of CZTS and CZTSSe solar cells for buffer layers selection
    Cherouana, Abdelbaki
    Labbani, Rebiha
    [J]. APPLIED SURFACE SCIENCE, 2017, 424 : 251 - 255
  • [9] Investigating In2S3 as the buffer layer in CZTSSe solar cells using simulation and experimental approaches
    Eghbalifar, Bashir
    Izadneshan, Heydar
    Solookinejad, Ghahraman
    Separdar, Leila
    [J]. SOLID STATE COMMUNICATIONS, 2022, 343
  • [10] Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution
    Enkhbat, Temujin
    Kim, SeongYeon
    Kim, Junho
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36735 - 36741