Multi-Scale Contourlet Knowledge Guide Learning Segmentation

被引:4
作者
Liu, Mengkun [1 ]
Jiao, Licheng [1 ]
Liu, Xu [1 ]
Li, Lingling [1 ]
Liu, Fang [1 ]
Yang, Shuyuan [1 ]
Wang, Shuang [1 ]
Hou, Biao [1 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Sch Artificial Intelligence, Minist Educ,Joint Int Res Lab Intelligent Percept, Xian 710071, Peoples R China
关键词
Semantic segmentation; Shape; Image color analysis; Spectral analysis; Buildings; Knowledge engineering; Training; Multi-scales; multi-directions; pyramidal directional filter bank; polyp segmentation; building extraction; ATTENTION NETWORK; ENDOSCOPY IMAGES; POLYPS; TRANSFORM; SELECTION;
D O I
10.1109/TMM.2023.3326949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For accurate segmentation, effective feature extraction has always been a challenging problem, since the variability of appearance and the fuzziness of object boundaries. Convolutional neural networks have recently gained recognition in feature representation learning. However, it is only conducted in the spatial domain, and lacks effective representation of directionality, singularity and regularity in the spectral domain for anomaly detection of images. This is the key to feature learning representation of high-order singularity. To solve this problem, a multi-scale contourlet knowledge guide learning network is proposed in this paper. It is novel in this sense that, different from the CNNs in the spatial domain, the proposed method learns the multi-scale contourlet sparse representation to obtain more effective and sparse features in multi-scales and multi-directions. Furthermore, the contourlet knowledge guide learning can enhance the representation of spectral domain features. It is shown that the proposed network can learn the multi-level discriminative features and capture the more accurate object boundaries. The segmentation ability in theoretical analysis and experiments on five polyp segmentation datasets (CVC-ColonDB, CVC-ClinicDB, Kvasir-SEG, ETIS-LaribPolypDB, EndoSceneStill) and two building datasets (Massachusetts, WHU) are compared with developed methods. It must be emphasized that there is potential in effective feature learning representation and the generalization capability of the proposed method in deep learning, recognition and interpretation.
引用
收藏
页码:4831 / 4845
页数:15
相关论文
共 50 条
  • [41] A Segmentation Algorithm of Colonoscopy Images Based on Multi-Scale Feature Fusion
    Yu, Jing
    Li, Zhengping
    Xu, Chao
    Feng, Bo
    ELECTRONICS, 2022, 11 (16)
  • [42] Multi-scale triple-attention network for pixelwise crack segmentation
    Yang, Lei
    Bai, Suli
    Liu, Yanhong
    Yu, Hongnian
    AUTOMATION IN CONSTRUCTION, 2023, 150
  • [43] Multi-scale contrast based skin lesion segmentation in digital images
    Filali, Idir
    Belkadi, Malika
    OPTIK, 2019, 185 : 794 - 811
  • [44] Multi-Scale Context Aggregation for Semantic Segmentation of Remote Sensing Images
    Zhang, Jing
    Lin, Shaofu
    Ding, Lei
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (04)
  • [45] GFSegNet: A multi-scale segmentation model for mining area ground fissures
    Chen, Peng
    Li, Peixian
    Wang, Bing
    Ding, Xingcheng
    Zhang, Yongliang
    Zhang, Tao
    Yu, Tianxiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [46] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517
  • [47] Multi-Scale Feature Aggregation Network for Semantic Segmentation of Land Cover
    Shen, Xu
    Weng, Liguo
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2022, 14 (23)
  • [48] Multi-Scale Convolutional Features Network for Semantic Segmentation in Indoor Scenes
    Wang, Yanran
    Chen, Qingliang
    Chen, Shilang
    Wu, Junjun
    IEEE ACCESS, 2020, 8 : 89575 - 89583
  • [49] DBAN: Adversarial Network With Multi-Scale Features for Cardiac MRI Segmentation
    Yang, Xinyu
    Zhang, Yuan
    Lo, Benny
    Wu, Dongrui
    Liao, Hongen
    Zhang, Yuan-Ting
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2018 - 2028
  • [50] Multi-scale deep context convolutional neural networks for semantic segmentation
    Quan Zhou
    Wenbing Yang
    Guangwei Gao
    Weihua Ou
    Huimin Lu
    Jie Chen
    Longin Jan Latecki
    World Wide Web, 2019, 22 : 555 - 570