Multi-Scale Contourlet Knowledge Guide Learning Segmentation

被引:4
|
作者
Liu, Mengkun [1 ]
Jiao, Licheng [1 ]
Liu, Xu [1 ]
Li, Lingling [1 ]
Liu, Fang [1 ]
Yang, Shuyuan [1 ]
Wang, Shuang [1 ]
Hou, Biao [1 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Sch Artificial Intelligence, Minist Educ,Joint Int Res Lab Intelligent Percept, Xian 710071, Peoples R China
关键词
Semantic segmentation; Shape; Image color analysis; Spectral analysis; Buildings; Knowledge engineering; Training; Multi-scales; multi-directions; pyramidal directional filter bank; polyp segmentation; building extraction; ATTENTION NETWORK; ENDOSCOPY IMAGES; POLYPS; TRANSFORM; SELECTION;
D O I
10.1109/TMM.2023.3326949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For accurate segmentation, effective feature extraction has always been a challenging problem, since the variability of appearance and the fuzziness of object boundaries. Convolutional neural networks have recently gained recognition in feature representation learning. However, it is only conducted in the spatial domain, and lacks effective representation of directionality, singularity and regularity in the spectral domain for anomaly detection of images. This is the key to feature learning representation of high-order singularity. To solve this problem, a multi-scale contourlet knowledge guide learning network is proposed in this paper. It is novel in this sense that, different from the CNNs in the spatial domain, the proposed method learns the multi-scale contourlet sparse representation to obtain more effective and sparse features in multi-scales and multi-directions. Furthermore, the contourlet knowledge guide learning can enhance the representation of spectral domain features. It is shown that the proposed network can learn the multi-level discriminative features and capture the more accurate object boundaries. The segmentation ability in theoretical analysis and experiments on five polyp segmentation datasets (CVC-ColonDB, CVC-ClinicDB, Kvasir-SEG, ETIS-LaribPolypDB, EndoSceneStill) and two building datasets (Massachusetts, WHU) are compared with developed methods. It must be emphasized that there is potential in effective feature learning representation and the generalization capability of the proposed method in deep learning, recognition and interpretation.
引用
收藏
页码:4831 / 4845
页数:15
相关论文
共 50 条
  • [31] Multi-Scale Recursive Context Aggregation Network for Semantic Segmentation
    Yalcin, Abdullah
    Keskinoz, Mehmet
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [32] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [33] Establishing effective learning bridge cross multi-scale feature maps for object detection and semantic segmentation
    Wang, Bo
    Feng, Zeyu
    Li, Jun
    Sheng, Qinghong
    Ling, Xiao
    Liu, Xiang
    Wang, Haowen
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2025, 46 (02) : 509 - 537
  • [34] Multi-Scale Metric Learning for Few-Shot Learning
    Jiang, Wen
    Huang, Kai
    Geng, Jie
    Deng, Xinyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (03) : 1091 - 1102
  • [35] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083
  • [36] Multi-scale deep context convolutional neural networks for semantic segmentation
    Zhou, Quan
    Yang, Wenbing
    Gao, Guangwei
    Ou, Weihua
    Lu, Huimin
    Chen, Jie
    Latecki, Longin Jan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 555 - 570
  • [37] Optimization of multi-scale segmentation of satellite imagery using fractal geometry
    Karydas, Christos G.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 2905 - 2933
  • [38] Multi-scale Generative Adversarial Network for Automatic Sublingual Vein Segmentation
    Xiong, Qingyue
    Li, Xinlei
    Yang, Dawei
    Zhang, Wei
    Zhang, Ye
    Kong, Yajie
    Li, Fufeng
    Zhang, Wenqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 851 - 856
  • [39] DeepNeXt: a lightweight polyp segmentation algorithm based on multi-scale attention
    Wang, Chuantao
    Wang, Saishuo
    Shao, Shuo
    Zhai, Jiliang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8551 - 8567
  • [40] A multi-scale strategy for deep semantic segmentation with convolutional neural networks
    Zhao, Bonan
    Zhang, Xiaoshan
    Li, Zheng
    Hu, Xianliang
    NEUROCOMPUTING, 2019, 365 : 273 - 284