Genome Sequencing and Analysis of Nigrospora oryzae, a Rice Leaf Disease Fungus

被引:2
作者
Zhao, Qian [1 ]
Zhang, Liyan [2 ]
Wu, Jianzhong [3 ]
机构
[1] Heilongjiang Acad Agr Sci, Cultivat & Farming Res Inst, Harbin 150086, Peoples R China
[2] Inner Mongolia Agr Univ, Forestry Coll, Hohhot 010011, Peoples R China
[3] Heilongjiang Acad Agr Sci, Inst Forage & Grassland Sci, Harbin 150086, Peoples R China
关键词
Nigrospora oryzae; fungal pathogens; genome; transcription factors; 1ST REPORT; LINT ROT; IDENTIFICATION; PLANT; TOOL; CLASSIFICATION; ANNOTATION; PREDICTION; FAMILIES; DATABASE;
D O I
10.3390/jof10020100
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Nigrospora oryzae is one of several fungal pathogens known to cause brown streaks, leaf spots, and latent infections in rice. In this study, the entire 42.09 -Mb genome of N. oryzae was sequenced at a depth of 169x using the Oxford Nanopore Technologies platform. The draft genome sequence was comprised of 26 scaffolds, possessed an average GC content of 58.83%, and contained a total of 10,688 protein -coding genes. Analysis of the complete genome sequence revealed that CAZyme-encoding genes account for 6.11% of all identified genes and that numerous transcription factors (TFs) associated with diverse biological processes belong predominantly to Zn-clus (22.20%) and C2H2 (10.59%) fungal TF classes. In addition, genes encoding 126 transport proteins and 3307 pathogen-host interaction proteins were identified. Comparative analysis of the previously reported N. oryzae reference strain GZL1 genome and the genome of a representative strain ZQ1 obtained here revealed 9722 colinear genes. Collectively, these findings provide valuable insights into N. oryzae genetic mechanisms and phenotypic characteristics.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] Secrets of the subterranean pathosystem of Armillaria
    Baumgartner, Kendra
    Coetzee, Martin P. A.
    Hoffmeister, Dirk
    [J]. MOLECULAR PLANT PATHOLOGY, 2011, 12 (06) : 515 - 534
  • [3] Blanco Enrique, 2007, Curr Protoc Bioinformatics, VChapter 4, DOI 10.1002/0471250953.bi0403s18
  • [4] Prediction of complete gene structures in human genomic DNA
    Burge, C
    Karlin, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) : 78 - 94
  • [5] Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis
    Campbell, Matthew A.
    Haas, Brian J.
    Hamilton, John P.
    Mount, Stephen M.
    Buell, C. Robin
    [J]. BMC GENOMICS, 2006, 7 (1)
  • [6] Blast2GO:: a universal tool for annotation, visualization and analysis in functional genomics research
    Conesa, A
    Götz, S
    García-Gómez, JM
    Terol, J
    Talón, M
    Robles, M
    [J]. BIOINFORMATICS, 2005, 21 (18) : 3674 - 3676
  • [7] A Pipeline for Non-model Organisms for de novo Transcriptome Assembly, Annotation, and Gene Ontology Analysis Using Open Tools: Case Study with Scots Pine
    Duarte, Gustavo T.
    Volkova, Polina Yu
    Geras'kin, Stanislav A.
    [J]. BIO-PROTOCOL, 2021, 11 (03):
  • [8] Profile hidden Markov models
    Eddy, SR
    [J]. BIOINFORMATICS, 1998, 14 (09) : 755 - 763
  • [9] PILER: identification and classification of genomic repeats
    Edgar, RC
    Myers, EW
    [J]. BIOINFORMATICS, 2005, 21 : I152 - I158
  • [10] The Pfam protein families database: towards a more sustainable future
    Finn, Robert D.
    Coggill, Penelope
    Eberhardt, Ruth Y.
    Eddy, Sean R.
    Mistry, Jaina
    Mitchell, Alex L.
    Potter, Simon C.
    Punta, Marco
    Qureshi, Matloob
    Sangrador-Vegas, Amaia
    Salazar, Gustavo A.
    Tate, John
    Bateman, Alex
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D279 - D285