Studying stochastic systems biology of the cell with single-cell genomics data

被引:8
|
作者
Gorin, Gennady [1 ]
Vastola, John J. [2 ]
Pachter, Lior [3 ,4 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Harvard Med Sch, Dept Neurobiol, Boston, MA 02115 USA
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
关键词
GENE REGULATORY NETWORKS; RNA-SEQ; OCCUPATION MEASURES; FUNDAMENTAL LIMITS; EXTRINSIC NOISE; INFERENCE; EXPRESSION; DISTRIBUTIONS; MODELS; REPRESENTATION;
D O I
10.1016/j.cels.2023.08.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.
引用
收藏
页码:822 / 843.e22
页数:45
相关论文
共 50 条
  • [41] Hotspot identifies informative gene modules across modalities of single-cell genomics
    DeTomaso, David
    Yosef, Nir
    CELL SYSTEMS, 2021, 12 (05) : 446 - +
  • [42] Emergent statistical laws in single-cell transcriptomic data
    Lazzardi, Silvia
    Valle, Filippo
    Mazzolini, Andrea
    Scialdone, Antonio
    Caselle, Michele
    Osella, Matteo
    PHYSICAL REVIEW E, 2023, 107 (04)
  • [43] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [44] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [45] Semisoft clustering of single-cell data
    Zhu, Lingxue
    Lei, Jing
    Klei, Lambertus
    Devlin, Bernie
    Roeder, Kathryn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (02) : 466 - 471
  • [46] The first five years of single-cell cancer genomics and beyond
    Navin, Nicholas E.
    GENOME RESEARCH, 2015, 25 (10) : 1499 - 1507
  • [47] Single-cell genomics in AML: extending the frontiers of AML research
    Ediriwickrema, Asiri
    Gentles, Andrew J.
    Majeti, Ravindra
    BLOOD, 2023, 141 (04) : 345 - 355
  • [48] Deciphering transcriptional and functional heterogeneity in hematopoiesis with single-cell genomics
    Martin-Rufino, Jorge D.
    Sankaran, Vijay G.
    CURRENT OPINION IN HEMATOLOGY, 2021, 28 (04) : 269 - 276
  • [49] New frameworks for hematopoiesis derived from single-cell genomics
    Safina, Ksenia
    van Galen, Peter
    BLOOD, 2024, 144 (10) : 1039 - 1047
  • [50] An atlas of rabbit development as a model for single-cell comparative genomics
    Ton, Mai-Linh Nu
    Keitley, Daniel
    Theeuwes, Bart
    Guibentif, Carolina
    Ahnfelt-Ronne, Jonas
    Andreassen, Thomas Kjaergaard
    Calero-Nieto, Fernando J.
    Imaz-Rosshandler, Ivan
    Pijuan-Sala, Blanca
    Nichols, Jennifer
    Benito-Gutierrez, Elia
    Marioni, John C.
    Gottgens, Berthold
    NATURE CELL BIOLOGY, 2023, 25 (07) : 1061 - +