Studying stochastic systems biology of the cell with single-cell genomics data

被引:8
|
作者
Gorin, Gennady [1 ]
Vastola, John J. [2 ]
Pachter, Lior [3 ,4 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Harvard Med Sch, Dept Neurobiol, Boston, MA 02115 USA
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
关键词
GENE REGULATORY NETWORKS; RNA-SEQ; OCCUPATION MEASURES; FUNDAMENTAL LIMITS; EXTRINSIC NOISE; INFERENCE; EXPRESSION; DISTRIBUTIONS; MODELS; REPRESENTATION;
D O I
10.1016/j.cels.2023.08.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.
引用
收藏
页码:822 / 843.e22
页数:45
相关论文
共 50 条
  • [31] Scaling single-cell genomics from phenomenology to mechanism
    Tanay, Amos
    Regev, Aviv
    NATURE, 2017, 541 (7637) : 331 - 338
  • [32] Mapping the human kidney using single-cell genomics
    Schreibing, Felix
    Kramann, Rafael
    NATURE REVIEWS NEPHROLOGY, 2022, 18 (06) : 347 - 360
  • [33] Application of single-cell genomics in cancer: promise and challenges
    Wills, Quin F.
    Mead, Adam J.
    HUMAN MOLECULAR GENETICS, 2015, 24 : R74 - R84
  • [34] scAB detects multiresolution cell states with clinical significance by integrating single-cell genomics and bulk sequencing data
    Zhang, Qinran
    Jin, Suoqin
    Zou, Xiufen
    NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : 12112 - 12130
  • [35] Network modeling of single-cell omics data: challenges, opportunities, and progresses
    Blencowe, Montgomery
    Arneson, Douglas
    Ding, Jessica
    Chen, Yen-Wei
    Saleem, Zara
    Yang, Xia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (04) : 379 - 398
  • [36] Adapting systems biology to address the complexity of human disease in the single-cell era
    Fischer, David S.
    Villanueva, Martin A.
    Winter, Peter S.
    Shalek, Alex K.
    NATURE REVIEWS GENETICS, 2025,
  • [37] Using single-cell genomics to understand developmental processes and cell fate decisions
    Griffiths, Jonathan A.
    Scialdone, Antonio
    Marioni, John C.
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (04)
  • [38] SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data
    Persad, Sitara
    Choo, Zi-Ning
    Dien, Christine
    Sohail, Noor
    Masilionis, Ignas
    Chaligne, Ronan
    Nawy, Tal
    Brown, Chrysothemis C. C.
    Sharma, Roshan
    Pe'er, Itsik
    Setty, Manu
    Pe'er, Dana
    NATURE BIOTECHNOLOGY, 2023, 41 (12) : 1746 - +
  • [39] Single-Cell RNA Sequencing for Studying Human Cancers
    Aran, Dvir
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 1 - 22
  • [40] Marrying microfluidics and microwells for parallel, high-throughput single-cell genomics
    Wadsworth, Marc H., II
    Hughes, Travis K.
    Shalek, Alex K.
    GENOME BIOLOGY, 2015, 16