A Cognitive Multi-Carrier Radar for Communication Interference Avoidance via Deep Reinforcement Learning

被引:5
|
作者
Shan, Zhao [1 ]
Liu, Pengfei [1 ]
Wang, Lei [1 ]
Liu, Yimin [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
Radar; Radio spectrum management; Interference; Metalearning; Training; Reinforcement learning; Deep learning; Cognitive radar; deep reinforcement learning; meta learning; spectrum sharing; MITIGATION; TRACKING;
D O I
10.1109/TCCN.2023.3306854
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Spectrum sharing between the radar and communication systems has become increasingly prevalent in recent years, therefore reducing the communication interference is a critical issue for radar. Deep reinforcement learning (DRL) based frequency allocation is a popular approach to solving the problem, especially in the highly dynamic spectrum. However, most DRL based methods suffer from low training efficiency due to the limited channel state information (CSI). To address the challenge, we propose a cognitive multi-carrier radar (CMCR), which acquires more CSI in one transmission and thus can learn the spectrum evolution faster. The frequency allocation problem for the CMCR is formulated as a partially observable Markov decision process which is hard to solve due to the combinatorial action space. To this end, we use the Iteratively Selecting approach along with the Proximal Policy Optimization (ISPPO) to solve it. To further enhance the performance of the CMCR in a short-term task, we pre-train the policy with model agnostic meta learning (MAML). Simulation results show that the CMCR learns fast and achieves an excellent detection ability in a congested spectrum on the basis of the ISPPO method. Besides, we also illustrate the efficiency of the MAML pre-training.
引用
收藏
页码:1561 / 1578
页数:18
相关论文
共 50 条
  • [31] A survey of multi-agent deep reinforcement learning with communication
    Zhu, Changxi
    Dastani, Mehdi
    Wang, Shihan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2024, 38 (01)
  • [32] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [33] Traffic signal timing via deep reinforcement learning
    Li L.
    Lv Y.
    Wang F.-Y.
    Li, Li (li-li@tsinghua.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc. (03): : 247 - 254
  • [34] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [35] Traffic Signal Timing via Deep Reinforcement Learning
    Li Li
    Yisheng Lv
    Fei-Yue Wang
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (03) : 247 - 247
  • [36] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [37] Obstacle Avoidance for UAS in Continuous Action Space Using Deep Reinforcement Learning
    Hu, Jueming
    Yang, Xuxi
    Wang, Weichang
    Wei, Peng
    Ying, Lei
    Liu, Yongming
    IEEE ACCESS, 2022, 10 : 90623 - 90634
  • [38] A Multi-Agent Deep Reinforcement Learning Approach for Practical Decentralized UAV Collision Avoidance
    Thumiger, Nicholas
    Deghat, Mohammad
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2174 - 2179
  • [39] A cognitive communication jamming strategy based on Transformer and Deep Reinforcement Learning
    Hou, Wenjun
    Jin, Hu
    Peng, Chuang
    Jiang, Li
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [40] QoS-Aware Hybrid Beamforming and DOA Estimation in Multi-Carrier Dual-Function Radar-Communication Systems
    Cheng, Ziyang
    Liao, Bin
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (06) : 1890 - 1905