Analysing sentiment change detection of Covid-19 tweets

被引:1
|
作者
Theocharopoulos, Panagiotis C. [1 ]
Tsoukala, Anastasia [1 ]
Georgakopoulos, Spiros V. [2 ]
Tasoulis, Sotiris K. [1 ]
Plagianakos, Vassilis P. [1 ]
机构
[1] Univ Thessaly, Dept Comp Sci & Biomed Informat, Lamia, Greece
[2] Univ Thessaly, Dept Math, Lamia, Greece
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 29期
关键词
Sentiment change detection; Covid-19; tweets; BERT; PELT;
D O I
10.1007/s00521-023-08662-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Covid-19 pandemic made a significant impact on society, including the widespread implementation of lockdowns to prevent the spread of the virus. This measure led to a decrease in face-to-face social interactions and, as an equivalent, an increase in the use of social media platforms, such as Twitter. As part of Industry 4.0, sentiment analysis can be exploited to study public attitudes toward future pandemics and sociopolitical situations in general. This work presents an analysis framework by applying a combination of natural language processing techniques and machine learning algorithms to classify the sentiment of each tweet as positive, or negative. Through extensive experimentation, we expose the ideal model for this task and, subsequently, utilize sentiment predictions to perform time series analysis over the course of the pandemic. In addition, a change point detection algorithm was applied in order to identify the turning points in public attitudes toward the pandemic, which were validated by cross-referencing the news report at that particular period of time. Finally, we study the relationship between sentiment trends on social media and, news coverage of the pandemic, providing insights into the public's perception of the pandemic and its influence on the news.
引用
收藏
页码:21433 / 21443
页数:11
相关论文
共 50 条
  • [11] Sentiment analysis tracking of COVID-19 vaccine through tweets
    Sarirete, Akila
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (11) : 14661 - 14669
  • [12] Sentiment analysis of Indian Tweets about Covid-19 vaccines
    Mir, Aasif Ahmad
    Sevukan, Rathinam
    JOURNAL OF INFORMATION SCIENCE, 2024, 50 (05) : 1308 - 1320
  • [13] Sentiment analysis of tweets about COVID-19 disease during pandemic
    Matosevic, Goran
    Bevanda, Vanja
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1290 - 1295
  • [14] Sentiment and emotion trends in nurses' tweets about the COVID-19 pandemic
    Xavier, Teenu
    Lambert, Joshua
    JOURNAL OF NURSING SCHOLARSHIP, 2022, 54 (05) : 613 - 622
  • [15] A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets
    Said, Haidi
    Tawfik, BenBella S.
    Makhlouf, Mohamed A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 530 - 538
  • [16] Analysis and Prediction of User Sentiment on COVID-19 Pandemic Using Tweets
    Yeasmin, Nilufa
    Mahbub, Nosin Ibna
    Baowaly, Mrinal Kanti
    Singh, Bikash Chandra
    Alom, Zulfikar
    Aung, Zeyar
    Azim, Mohammad Abdul
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (02)
  • [17] COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification
    Samuel, Jim
    Ali, G. G. Md Nawaz
    Rahman, Md Mokhlesur
    Esawi, Ek
    Samuel, Yana
    INFORMATION, 2020, 11 (06)
  • [18] Analysing the features of negative sentiment tweets
    Zhang, Ling
    Dong, Wei
    Mu, Xiangming
    ELECTRONIC LIBRARY, 2018, 36 (05): : 782 - 799
  • [19] Leveraging Tweets for Artificial Intelligence Driven Sentiment Analysis on the COVID-19 Pandemic
    Alkhaldi, Nora A.
    Asiri, Yousef
    Mashraqi, Aisha M.
    Halawani, Hanan T.
    Abdel-Khalek, Sayed
    Mansour, Romany F.
    HEALTHCARE, 2022, 10 (05)
  • [20] Sentiment Analysis of COVID-19 Tweets by Machine Learning and Deep Learning Classifiers
    Jain, Ritanshi
    Bawa, Seema
    Sharma, Seemu
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 329 - 339