Rethinking feature extraction and aggregation for lightweight single-image super-resolution

被引:1
作者
Chen, Xiaozhen [1 ]
Guo, Yaoguang [1 ]
Zhang, Yumei [1 ]
Fang, Haoda [1 ]
机构
[1] China Telecom Beijing Res, Beijing, Peoples R China
关键词
lightweight network; reparameterizable; hierarchical aggregation; image super-resolution; NETWORK;
D O I
10.1117/1.JEI.32.1.013044
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep feature extraction and aggregation are critical components for lightweight single-image super-resolution networks. However, advanced feature extraction approaches like the reparameterization used in edge-enhanced feature distillation network increase the reparameterization structure to seven branches, which introduces additional training time and limits devices with strong parallel computing power, such as graphics processing unit. Simultaneously, commonly used feature aggregation methods, such as global and local feature aggregation, do not sufficiently exploit hierarchical features extracted from different deep feature extraction blocks. To address the above limitations, we propose a novel reparameterized branching block structure named spatially and channel diversified branching block. It employs three components with different receptive fields and two depthwise convolutions with different kernel sizes to increase spatial and channel diversity, enrich the reconstruction details, and significantly reduce the training time cost of the branches. Meanwhile, we analyze the memory consumption of generic aggregation methods and propose an adaptive hierarchical aggregation (AHA) method. It adopts a set of trainable parameters and channel attention mechanisms to implement a selective aggregation approach, further enhancing the feature aggregation's generalization ability. Based on the proposed feature extraction and aggregation methods, we construct a spatial and channel diverse network (SCDNet). Extensive experiments across five benchmark datasets demonstrate the effectiveness of spatial and channel features in feature extraction, with AHA showing perfect aggregation ability. Our method provides superior performance over state-of-the-art single-image super-resolution methods, including reparameterized branch structures and other common approaches, in terms of both standard metrics and visual effects.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[2]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[3]   DO-Conv: Depthwise Over-Parameterized Convolutional Layer [J].
Cao, Jinming ;
Li, Yangyan ;
Sun, Mingchao ;
Chen, Ying ;
Lischinski, Dani ;
Cohen-Or, Daniel ;
Chen, Baoquan ;
Tu, Changhe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :3726-3736
[4]  
Chen XY, 2022, Arxiv, DOI arXiv:2205.04437
[5]   Diverse Branch Block: Building a Convolution as an Inception-like Unit [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Han, Jungong ;
Ding, Guiguang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10881-10890
[6]   RepVGG: Making VGG-style ConvNets Great Again [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Ma, Ningning ;
Han, Jungong ;
Ding, Guiguang ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13728-13737
[7]   ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks [J].
Ding, Xiaohan ;
Guo, Yuchen ;
Ding, Guiguang ;
Han, Jungong .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1911-1920
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]   Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution [J].
Du, Zongcai ;
Liu, Ding ;
Liu, Jie ;
Tang, Jie ;
Wu, Gangshan ;
Fu, Lean .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :852-861
[10]  
Gao GW, 2022, AAAI CONF ARTIF INTE, P661