Human Body Shapes Anomaly Detection and Classification Using Persistent Homology

被引:0
|
作者
de Rose, Steve [1 ,2 ]
Meyer, Philippe [1 ]
Bertrand, Frederic [1 ]
机构
[1] Univ Technol Troyes, Comp Sci & Digital Soc Lab LIST3N, F-10004 Troyes, France
[2] Univ Strasbourg, Inst Rech Math Avancee IRMA, CNRS UMR 7501, F-67084 Strasbourg, France
关键词
topological data analysis; machine learning; persistent homology; clustering; anomaly detection; morphotype; TOPOLOGICAL DATA-ANALYSIS; POLYNOMIALS;
D O I
10.3390/a16030161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate sizing systems of a population permit the minimization of the production costs of the textile apparel industry and allow firms to satisfy their customers. Hence, information about human body shapes needs to be extracted in order to examine, compare and classify human morphologies. In this paper, we use topological data analysis to study human body shapes. Persistence theory applied to anthropometric point clouds together with clustering algorithms show that relevant information about shapes is extracted by persistent homology. In particular, the homologies of human body points have interesting interpretations in terms of human anatomy. In the first place, anomalies of scans are detected using complete-linkage hierarchical clusterings. Then, a discrimination index shows which type of clustering separates gender accurately and if it is worth restricting to body trunks or not. Finally, Ward-linkage hierarchical clusterings with Davies-Bouldin, Dunn and Silhouette indices are used to define eight male morphotypes and seven female morphotypes, which are different in terms of weight classes and ratios between bust, waist and hip circumferences. The techniques used in this work permit us to classify human bodies and detect scan anomalies directly on the full human body point clouds rather than the usual methods involving the extraction of body measurements from individuals or their scans.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Anomaly Detection Using Persistent Homology
    Bruillard, Paul
    Nowak, Kathleen
    Purvine, Emilie
    2016 CYBERSECURITY SYMPOSIUM, 2016, : 7 - 12
  • [2] Haze Detection Using Persistent Homology
    Zulkepli, N. F. S.
    Noorani, M. S. M.
    Razak, F. A.
    Ismail, M.
    Alias, M. A.
    2018 UKM FST POSTGRADUATE COLLOQUIUM, 2019, 2111
  • [3] Navigation Style Classification Using Persistent Homology
    Akai, Naoki
    Matsubayashi, Shota
    Miwa, Kazuhisa
    Hirayama, Takatsugu
    Murase, Hiroshi
    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 161 - 164
  • [4] Persistent homology and partial similarity of shapes
    Di Fabio, Barbara
    Landi, Claudia
    PATTERN RECOGNITION LETTERS, 2012, 33 (11) : 1445 - 1450
  • [5] Acute lymphoblastic leukemia classification using persistent homology
    Shah, Waqar Hussain
    Baloch, Abdullah
    Jaimes-Reategui, Rider
    Iqbal, Sohail
    Fatima, Syeda Rafia
    Pisarchik, Alexander N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [6] Abandoned Object Detection Using Persistent Homology
    Leon, Javier Lamar
    Baryolo, Raul Alonso
    Garcia Reyes, Edel
    Gonzalez Diaz, Rocio
    Salgueiro, Pedro
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 178 - 188
  • [7] Dark soliton detection using persistent homology
    Leykam, Daniel
    Rondon, Irving
    Angelakis, Dimitris G.
    CHAOS, 2022, 32 (07)
  • [8] Classification of Hepatic Tumor Images Using Persistent Homology
    Kotoku, J.
    Oyama, A.
    Hiraoka, Y.
    Obayashi, I.
    Shiraishi, K.
    Haga, A.
    Kondo, H.
    Saikawa, Y.
    Kobayashi, T.
    Furui, S.
    MEDICAL PHYSICS, 2018, 45 (06) : E192 - E192
  • [9] Chatter detection in turning using persistent homology
    Khasawneh, Firas A.
    Munch, Elizabeth
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 : 527 - 541
  • [10] Chatter detection in turning using persistent homology
    Khasawneh, Firas A.
    Munch, Elizabeth
    Mechanical Systems and Signal Processing, 2016, 70-71 : 527 - 541