Parameter optimization for point clouds denoising based on no-reference quality assessment

被引:8
|
作者
Qu, Chengzhi [1 ]
Zhang, Yan [1 ]
Ma, Feifan [1 ]
Huang, Kun [1 ]
机构
[1] Sun Yat sen Univ, Sch Aeronaut & Astronaut, Shenzhen Campus, Shenzhen 518000, Peoples R China
关键词
Parameter optimization; Point clouds; Denoising; Quality assessment; OUTLIER DETECTION; GEOMETRY; MODEL; ALGORITHM; COLOR;
D O I
10.1016/j.measurement.2023.112592
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Almost all point clouds denoising methods contain various parameters, which need to be set carefully to acquire desired results. In this paper, we introduce an evolutionary optimization algorithm based framework to obtain the parameter configuration of point clouds denoising methods automatically. New no-reference quality assessment metrics are proposed as objective functions to quantitatively evaluate the point clouds during the optimization process. The proposed metrics infer the quality of point clouds in terms of both smoothness and density. The ideas of manifold dimension and holes detection are combined to get the smoothness evaluation results. Simplified local outlier factor is further exploited for the density evaluation. Using public dataset and real-world scanned data, experimental results prove that the automatic tuning parameters provide a significant boost in performance compared with the manual tuning parameters. Furthermore, the results acquired by the proposed metrics achieve better or equivalent performance than the state-of-the-art metrics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] No-reference Image Denoising Quality Assessment
    Lu, Si
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 416 - 433
  • [2] Sparsity-based no-reference image quality assessment for automatic denoising
    Rakhshanfar, Meisam
    Amer, Maria A.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (04) : 739 - 747
  • [3] Sparsity-based no-reference image quality assessment for automatic denoising
    Meisam Rakhshanfar
    Maria A. Amer
    Signal, Image and Video Processing, 2018, 12 : 739 - 747
  • [4] Dynamic Hypergraph Convolutional Network for No-Reference Point Cloud Quality Assessment
    Chen, Wu
    Jiang, Qiuping
    Zhou, Wei
    Xu, Long
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10479 - 10493
  • [5] Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content
    Zhu, Xiang
    Milanfar, Peyman
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (12) : 3116 - 3132
  • [6] No-reference point cloud quality assessment based on multi-projection and hierarchical pyramid network
    Miao, Yizhuang
    Xiao, Shuyan
    Pan, Lingjiao
    Zhang, Lin
    Yang, Zhengkai
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 7969 - 7980
  • [7] No-reference quality assessment of underwater image enhancement
    Yi, Xiao
    Jiang, Qiuping
    Zhou, Wei
    DISPLAYS, 2024, 81
  • [8] A No-Reference Video Quality Assessment Metric Based On ROI
    Jia, Lixiu
    Zhong, Xuefei
    Tu, Yan
    Niu, Wenjuan
    IMAGE QUALITY AND SYSTEM PERFORMANCE XII, 2015, 9396
  • [9] DEEP LEARNING-BASED QUALITY ASSESSMENT OF 3D POINT CLOUDS WITHOUT REFERENCE
    Chetouani, Aladine
    Quach, Maurice
    Valenzise, Giuseppe
    Dufaux, Frederic
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [10] Perceptual Quality Assessment of Colored 3D Point Clouds
    Liu, Qi
    Su, Honglei
    Duanmu, Zhengfang
    Liu, Wentao
    Wang, Zhou
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (08) : 3642 - 3655