Numerical research of the in-cylinder natural gas stratification in a natural gas-diesel dual-fuel marine engine

被引:15
|
作者
Lu, Zhen [1 ]
Ma, Menghao [1 ]
Wang, Tianyou [1 ]
Lu, Tianlong [1 ]
Wang, Huaiyin [1 ]
Feng, Yizhuo [1 ]
Shi, Lei [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual-fuel engines; Natural gas stratification; Post Injection; Swirl; COMBUSTION; PERFORMANCE; SPRAY; FLOW; EMISSIONS; NOX;
D O I
10.1016/j.fuel.2022.126861
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The urgent need for decarbonization and emission reduction for marine engines is driving the development of alternative low-carbon fuels. One of the best alternative fuels for engines is natural gas, a clean energy source with vast reserves and a low price. However, low-pressure injection dual-fuel engines exhibit poor combustion characteristics at low engine loads, and extinction is likely to occur in the fuel mixture's dilution region. Thus, the Low Pressure Post Injection (LPPI) strategy was proposed in this paper. The major objective of the LPPI mode is to increase monocirculation combustion stability under low to moderate engine loads by achieving a reasonable distribution of NG in the combustion chamber. LPPI was compared with the Low Pressure Injection (LPI) strategy. Results indicate that the LPPI mode could successfully raise the swirl ratio in the cylinder up to 60.7 percent while perfectly avoiding the NG leakage phenomena. Additionally, with the aid of radial-wall distribution of NG and an improved swirl ratio in LPPI mode, the combustion duration is reduced by 33.6 percent, and the lean burn limit of the dual-fuel marine engine can be expanded to 0.30. Although local higher combustion temperature caused an large increase in NOx emission which is more than three times than LPI NOx emission, LPPI mode still meets Tier III NOx emission requirements.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A phenomenological combustion analysis of a dual-fuel natural-gas diesel engine
    Xu, Shuonan
    Anderson, David
    Hoffman, Mark
    Prucka, Robert
    Filipi, Zoran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2017, 231 (01) : 66 - 83
  • [22] An Experimental Study on Combustion and Performance of a Liquefied Natural Gas-Diesel Dual-Fuel Engine With Different Pilot Diesel Quantities
    Song, Jiantong
    Wang, Guna
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2020, 12 (02)
  • [23] Comparative analysis between natural gas/diesel (dual fuel) and pure diesel on the marine diesel engine
    Yu, Hongliang
    Duan, Shulin
    Sun, Peiting
    JOURNAL OF ENGINEERING RESEARCH, 2015, 3 (04): : 111 - 125
  • [24] Numerical evaluation of the effect of methane number on natural gas and diesel dual-fuel combustion
    Wu, Zhenkuo
    Rutland, Christopher J.
    Han, Zhiyu
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2019, 20 (04) : 405 - 423
  • [26] Numerical investigation of dual-fuel injection timing on air-fuel mixing and combustion process in a novel natural gas-diesel rotary engine
    Chen, Wei
    Pan, Jianfeng
    Fan, Baowei
    Otchere, Peter
    Miao, Nannan
    Lu, Yao
    ENERGY CONVERSION AND MANAGEMENT, 2018, 176 : 334 - 348
  • [27] An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine
    Lee, Chia-fon
    Pang, Yuxin
    Wu, Han
    Nithyanandan, Karthik
    Liu, Fushui
    APPLIED ENERGY, 2020, 261
  • [28] Parameter investigation of the pilot fuel post-injection strategy on performance and emissions characteristics of a large marine two-stroke natural gas-diesel dual-fuel engine
    Cong, Yujin
    Gan, Huibing
    Wang, Huaiyu
    FUEL, 2022, 323
  • [29] Study of injection pressure couple with EGR on combustion performance and emissions of natural gas-diesel dual-fuel engine
    Chen, Yingjie
    Zhu, Zan
    Chen, Yajuan
    Huang, Haozhong
    Zhu, Zhaojun
    Lv, Delin
    Pan, Mingzhang
    Guo, Xiaoyu
    FUEL, 2020, 261
  • [30] Numerical Investigation on Mixing Characteristics and Mechanism of Natural Gas/Air in a Super-Large-Bore Dual-Fuel Marine Engine
    Liu, Long
    Liu, Shihai
    Xia, Qian
    Liu, Bo
    Ma, Xiuzhen
    ATMOSPHERE, 2022, 13 (09)