Numerical research of the in-cylinder natural gas stratification in a natural gas-diesel dual-fuel marine engine

被引:15
|
作者
Lu, Zhen [1 ]
Ma, Menghao [1 ]
Wang, Tianyou [1 ]
Lu, Tianlong [1 ]
Wang, Huaiyin [1 ]
Feng, Yizhuo [1 ]
Shi, Lei [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual-fuel engines; Natural gas stratification; Post Injection; Swirl; COMBUSTION; PERFORMANCE; SPRAY; FLOW; EMISSIONS; NOX;
D O I
10.1016/j.fuel.2022.126861
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The urgent need for decarbonization and emission reduction for marine engines is driving the development of alternative low-carbon fuels. One of the best alternative fuels for engines is natural gas, a clean energy source with vast reserves and a low price. However, low-pressure injection dual-fuel engines exhibit poor combustion characteristics at low engine loads, and extinction is likely to occur in the fuel mixture's dilution region. Thus, the Low Pressure Post Injection (LPPI) strategy was proposed in this paper. The major objective of the LPPI mode is to increase monocirculation combustion stability under low to moderate engine loads by achieving a reasonable distribution of NG in the combustion chamber. LPPI was compared with the Low Pressure Injection (LPI) strategy. Results indicate that the LPPI mode could successfully raise the swirl ratio in the cylinder up to 60.7 percent while perfectly avoiding the NG leakage phenomena. Additionally, with the aid of radial-wall distribution of NG and an improved swirl ratio in LPPI mode, the combustion duration is reduced by 33.6 percent, and the lean burn limit of the dual-fuel marine engine can be expanded to 0.30. Although local higher combustion temperature caused an large increase in NOx emission which is more than three times than LPI NOx emission, LPPI mode still meets Tier III NOx emission requirements.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Numerical and optimization modeling of dual-fuel natural gas-diesel engine at the idle load
    Rezapour, Mojtaba
    Deymi-Dashtebayaz, Mahdi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (21) : 11913 - 11928
  • [2] A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine
    Dev, Shouvik
    Guo, Hongsheng
    Liko, Brian
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2020, 6
  • [3] An Experimental Study on the Effect of Intake Pressure on a Natural Gas-Diesel Dual-Fuel Engine
    Dev, Shouvik
    Guo, Hongsheng
    Liko, Brian
    Yousefi, Amin
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (12):
  • [4] A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load
    Pham, Van Chien
    Choi, Jae-Hyuk
    Rho, Beom-Seok
    Kim, Jun-Soo
    Park, Kyunam
    Park, Sang-Kyun
    Le, Van Vang
    Lee, Won-Ju
    ENERGIES, 2021, 14 (05)
  • [5] Gas-Diesel (dual-fuel) modeling in diesel engine environment
    Mansour, C
    Bounif, A
    Aris, A
    Gaillard, F
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2001, 40 (04) : 409 - 424
  • [6] Experimental and Simulation Analysis of Natural Gas-Diesel Combustion in Dual-Fuel Engines
    Dimitriou, Pavlos
    Tsujimura, Taku
    Kojima, Hirokazu
    Aoyagi, Kenji
    Kurimoto, Naoki
    Nishijima, Yoshiaki
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2020, 6
  • [7] A Numerical Investigation on NO2 Formation in a Natural Gas-Diesel Dual Fuel Engine
    Li, Yu
    Li, Hailin
    Guo, Hongsheng
    Li, Yongzhi
    Yao, Mingfa
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (09):
  • [8] Experimental and numerical study of multiple injection effects on combustion and emission characteristics of natural gas-diesel dual-fuel engine
    Huang, Haozhong
    Zhu, Zhaojun
    Chen, Yingjie
    Chen, Yajuan
    Lv, Delin
    Zhu, Jizhen
    Ouyang, Tiancheng
    ENERGY CONVERSION AND MANAGEMENT, 2019, 183 : 84 - 96
  • [9] Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine
    Wang, Huaiyin
    Wang, Tianyou
    Feng, Yizhuo
    Lu, Zhen
    Sun, Kai
    FUEL, 2022, 325
  • [10] Numerical Evaluation of the Effects of Compression Ratio and Diesel Fuel Injection Timing on the Performance and Emissions of a Fumigated Natural Gas-Diesel Dual-Fuel Engine
    Papagiannakis, Roussos G.
    Hountalas, Dimitrios T.
    Krishnan, Sundar Rajan
    Srinivasan, Kalyan Kumar
    Rakopoulos, Dimitrios C.
    Rakopoulos, Constantine D.
    JOURNAL OF ENERGY ENGINEERING, 2016, 142 (02)