Metal sulfide enhanced metal-organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid

被引:22
作者
Feng, Yixuan [1 ]
Yang, Kun [1 ]
Smith Jr, Richard L. L. [2 ]
Qi, Xinhua [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, 38 Tongyan Rd, Tianjin 300350, Peoples R China
[2] Tohoku Univ, Grad Sch Environm Studies, Aramaki Aza Aoba 468-1,Aoba Ku, Sendai 9808572, Japan
基金
中国国家自然科学基金;
关键词
HYDROGEN-PRODUCTION; AQUEOUS-PHASE; EFFICIENT; NANOSHEETS; EVOLUTION; NICKEL; REDUCTION; COBALT; ARRAYS; HMF;
D O I
10.1039/d2ta09426f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical oxidation of 5-hydroxymethylfurfural (HMF) is an efficient and sustainable way to produce a 2,5-furandicarboxylic acid (FDCA) monomer. In this study, two-dimensional (2D) metal-organic framework (MOF) nanoarrays embedded with Ni/Co/Fe sulfide nanoclusters were employed as electrocatalysts for HMF oxidation. The as-prepared NiCoFeS-MOF catalyst had interlaced structures and achieved 100% HMF conversion, 99% FDCA yields and Faraday efficiencies as high as 99% at 1.39 V vs. RHE driving voltage. Combination of metal sulfide nanoclusters with 2D MOF nanoarrays greatly enlarged the electrochemical active surface area and increased the number of active catalytic sites while improving electron transport. X-ray photoelectron spectroscopy indicated that electronic interactions increased the electron density of metal sites and enhanced intrinsic NiCoFeS-MOF electrooxidation performance. Embedding metal sulfide nanoclusters into MOF nanoarrays using the simple one-step solvothermal method proposed in this work greatly expands the scope of electrode materials available for electrochemical upgrading of biomass-related compounds.
引用
收藏
页码:6375 / 6383
页数:9
相关论文
共 50 条
  • [31] Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans
    Swan, Shanna H.
    [J]. ENVIRONMENTAL RESEARCH, 2008, 108 (02) : 177 - 184
  • [32] A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Taitt, Brandon J.
    Nam, Do-Hwan
    Choi, Kyoung-Shin
    [J]. ACS CATALYSIS, 2019, 9 (01): : 660 - 670
  • [33] Surface reconstruction of NiCoP for enhanced biomass upgrading
    Wang, Honglei
    Li, Chong
    An, Jintao
    Zhuang, Yuan
    Tao, Shengyang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (34) : 18421 - 18430
  • [34] State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis
    Wang, Qi
    Astruc, Didier
    [J]. CHEMICAL REVIEWS, 2020, 120 (02) : 1438 - 1511
  • [35] Fe-Doped Ni3S2 Nanowires with Surface-Restricted Oxidation Toward High-Current-Density Overall Water Splitting
    Wang, Xiangyu
    Zhang, Wuzhengzhi
    Zhang, Junliang
    Wu, Zhengcui
    [J]. CHEMELECTROCHEM, 2019, 6 (17) : 4550 - 4559
  • [36] Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural
    Xu, C.
    Paone, E.
    Rodriguez-Padron, D.
    Luque, R.
    Mauriello, F.
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (13) : 4273 - 4306
  • [37] Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution
    Xu, Yuxia
    Li, Bing
    Zheng, Shasha
    Wu, Ping
    Zhan, Jingyi
    Xue, Huaiguo
    Xu, Qiang
    Pang, Huan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) : 22070 - 22076
  • [38] Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials
    Yamashita, Toru
    Hayes, Peter
    [J]. APPLIED SURFACE SCIENCE, 2008, 254 (08) : 2441 - 2449
  • [39] MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting
    Yang, Yaqing
    Zhang, Kai
    Ling, Huanlei
    Li, Xiang
    Chan, Hang Cheong
    Yang, Lichun
    Gao, Qingsheng
    [J]. ACS CATALYSIS, 2017, 7 (04): : 2357 - 2366
  • [40] Efficient H2 Evolution Coupled with Oxidative Refining of Alcohols via A Hierarchically Porous Nickel Bifunctional Electrocatalyst
    You, Bo
    Liu, Xuan
    Liu, Xin
    Sun, Yujie
    [J]. ACS CATALYSIS, 2017, 7 (07): : 4564 - 4570