Quantization as a categorical equivalence

被引:2
作者
Feintzeig, Benjamin H. [1 ]
机构
[1] Univ Washington, Dept Philosophy, Seattle, WA 98105 USA
基金
美国国家科学基金会;
关键词
Strict deformation quantization; C*-algebras; Weyl algebra; Rieffel quantization; Categorical equivalence; DEFORMATION QUANTIZATION; CLASSICAL LIMIT; ALGEBRAS;
D O I
10.1007/s11005-023-01765-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that, in certain cases, quantization and the classical limit provide functors that are "almost inverse" to each other. These functors map between categories of algebraic structures for classical and quantum physics, establishing a categorical equivalence.
引用
收藏
页数:20
相关论文
共 31 条
  • [1] Awodey S, 2010, Category Theory, Vsecond
  • [2] Baez J., 2004, QUANT GRAV SEM
  • [3] Belov-Kanel A, 2021, Arxiv, DOI arXiv:2103.12784
  • [4] Deformation Quantization for Actions of Kahlerian Lie Groups
    Bieliavsky, Pierre
    Gayral, Victor
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 236 (1115) : 1 - +
  • [5] Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space
    Binz, E
    Honegger, R
    Rieckers, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) : 2885 - 2907
  • [6] Field-theoretic Weyl quantization as a strict and continuous deformation quantization
    Binz, E
    Honegger, R
    Rieckers, A
    [J]. ANNALES HENRI POINCARE, 2004, 5 (02): : 327 - 346
  • [7] Dixmier J., 1977, C*-algebras
  • [8] Why be regular? Part II
    Feintzeig, Benjamin
    Weatherall, James Owen
    [J]. STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2019, 65 : 133 - 144
  • [9] Why Be regular?, part I
    Feintzeig, Benjamin
    Le Manchak, J. B.
    Rosenstock, Sarita
    Weatherall, James Owen
    [J]. STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2019, 65 : 122 - 132
  • [10] The Classical Limit as an Approximation
    Feintzeig, Benjamin H.
    [J]. PHILOSOPHY OF SCIENCE, 2020, 87 (04) : 612 - 639