Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach

被引:6
|
作者
Shannon, Elliot S. [1 ,2 ]
Finley, Andrew O. [1 ]
Hayes, Daniel J. [3 ]
Noralez, Sylvia N. [3 ]
Weiskittel, Aaron R. [3 ]
Cook, Bruce D. [4 ]
Babcock, Chad [5 ]
机构
[1] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI USA
[3] Univ Maine, Sch Forest Resources, Orono, ME USA
[4] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Univ Minnesota, Dept Forest Resources, St Paul, MN USA
基金
美国国家科学基金会;
关键词
Bayesian; geolocation; LiDAR; GEDI;
D O I
10.1002/env.2840
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Geolocation error in spaceborne sampling light detection and ranging (LiDAR) measurements of forest structure can compromise forest attribute estimates and degrade integration with georeferenced field measurements or other remotely sensed data. Data integration is especially problematic when geolocation error is not well quantified. We propose a general model that uses airborne laser scanning data to quantify and correct geolocation error in spaceborne sampling LiDAR. To illustrate the model, LiDAR data from NASA Goddard's LiDAR Hyperspectral and Thermal Imager (G-LiHT) was used with a subset of LiDAR data from NASA's Global Ecosystem Dynamics Investigation (GEDI). The model accommodates multiple canopy height metrics derived from a simulated GEDI footprint kernel using spatially coincident G-LiHT, and incorporates both additive and multiplicative mapping between the canopy height metrics generated from both datasets. A Bayesian implementation provides probabilistic uncertainty quantification in both parameter and geolocation error estimates. Results show a systematic geolocation error of 9.62 m in the southwest direction. In addition, estimated geolocation errors within GEDI footprints were highly variable, with results showing a similar to$$ \sim $$0.45 probability the true footprint center is within 20 m. Estimating and correcting geolocation error via the model outlined here can help inform subsequent efforts to integrate spaceborne LiDAR data, like GEDI, with other georeferenced data.
引用
收藏
页数:19
相关论文
共 16 条
  • [11] Modeling Canopy Height of Forest-Savanna Mosaics in Togo Using ICESat-2 and GEDI Spaceborne LiDAR and Multisource Satellite Data
    Kombate, Arifou
    Kamga, Guy Armel Fotso
    Goita, Kalifa
    REMOTE SENSING, 2025, 17 (01)
  • [12] Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data
    Yin, Tiangang
    Montesano, Paul M.
    Cook, Bruce D.
    Chavanon, Eric
    Neigh, Christopher S. R.
    Shean, David
    Peng, Dongju
    Lauret, Nicolas
    Mkaouar, Ameni
    Morton, Douglas C.
    Regaieg, Omar
    Zhen, Zhijun
    Gastellu-Etchegorry, Jean-Philippe
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [13] MODEL-BASED ESTIMATION OF LARGE AREA FOREST CANOPY HEIGHT AND BIOMASS USING RADAR AND OPTICAL REMOTE SENSING WITH LIMITED LIDAR DATA
    Benson, Michael
    Pierce, Leland
    Sarabandi, Kamal
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1016 - 1019
  • [14] Feature Assessment in Object-based Forest Classification using Airborne LiDAR Data and High Spatial Resolution Satellite Imagery
    Zhang, Zhenyu
    Liu, Xiaoye
    Wright, Wendy
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,
  • [15] High-Resolution Canopy Height Model Generation and Validation Using USGS 3DEP LiDAR Data in Indiana, USA
    Oh, Sungchan
    Jung, Jinha
    Shao, Guofan
    Shao, Gang
    Gallion, Joey
    Fei, Songlin
    REMOTE SENSING, 2022, 14 (04)
  • [16] Object-Based Approach Using Very High Spatial Resolution 16-Band WorldView-3 and LiDAR Data for Tree Species Classification in a Broadleaf Forest in Quebec, Canada
    Varin, Mathieu
    Chalghaf, Bilel
    Joanisse, Gilles
    REMOTE SENSING, 2020, 12 (18)