Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach

被引:6
|
作者
Shannon, Elliot S. [1 ,2 ]
Finley, Andrew O. [1 ]
Hayes, Daniel J. [3 ]
Noralez, Sylvia N. [3 ]
Weiskittel, Aaron R. [3 ]
Cook, Bruce D. [4 ]
Babcock, Chad [5 ]
机构
[1] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI USA
[3] Univ Maine, Sch Forest Resources, Orono, ME USA
[4] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Univ Minnesota, Dept Forest Resources, St Paul, MN USA
基金
美国国家科学基金会;
关键词
Bayesian; geolocation; LiDAR; GEDI;
D O I
10.1002/env.2840
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Geolocation error in spaceborne sampling light detection and ranging (LiDAR) measurements of forest structure can compromise forest attribute estimates and degrade integration with georeferenced field measurements or other remotely sensed data. Data integration is especially problematic when geolocation error is not well quantified. We propose a general model that uses airborne laser scanning data to quantify and correct geolocation error in spaceborne sampling LiDAR. To illustrate the model, LiDAR data from NASA Goddard's LiDAR Hyperspectral and Thermal Imager (G-LiHT) was used with a subset of LiDAR data from NASA's Global Ecosystem Dynamics Investigation (GEDI). The model accommodates multiple canopy height metrics derived from a simulated GEDI footprint kernel using spatially coincident G-LiHT, and incorporates both additive and multiplicative mapping between the canopy height metrics generated from both datasets. A Bayesian implementation provides probabilistic uncertainty quantification in both parameter and geolocation error estimates. Results show a systematic geolocation error of 9.62 m in the southwest direction. In addition, estimated geolocation errors within GEDI footprints were highly variable, with results showing a similar to$$ \sim $$0.45 probability the true footprint center is within 20 m. Estimating and correcting geolocation error via the model outlined here can help inform subsequent efforts to integrate spaceborne LiDAR data, like GEDI, with other georeferenced data.
引用
收藏
页数:19
相关论文
共 16 条
  • [1] Incorporating of spatial effects in forest canopy height mapping using airborne, spaceborne lidar and spatial continuous remote sensing data
    Min, Wankun
    Chen, Yumin
    Huang, Wenli
    Wilson, John P.
    Tang, Hao
    Guo, Meiyu
    Xu, Rui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 133
  • [2] A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types
    May, Paul B.
    Finley, Andrew O.
    Dubayah, Ralph O.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (04) : 671 - 694
  • [3] Hybrid model for estimating forest canopy heights using fused multimodal spaceborne LiDAR data and optical imagery
    Wang, Shufan
    Liu, Chun
    Li, Weiyue
    Jia, Shoujun
    Yue, Han
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [4] Mapping forest canopy fuel parameters at European scale using spaceborne LiDAR and satellite data
    Aragoneses, Elena
    Garcia, Mariano
    Ruiz-Benito, Paloma
    Chuvieco, Emilio
    REMOTE SENSING OF ENVIRONMENT, 2024, 303
  • [5] Assessing and Correcting Topographic Effects on Forest Canopy Height Retrieval Using Airborne LiDAR Data
    Duan, Zhugeng
    Zhao, Dan
    Zeng, Yuan
    Zhao, Yujin
    Wu, Bingfang
    Zhu, Jianjun
    SENSORS, 2015, 15 (06) : 12133 - 12155
  • [6] Measuring forest canopy height using ICESat/GLAS data for applying to Japanese spaceborne LiDAR mission
    Hayashi, Masato
    Saigusa, Nobuko
    Oguma, Hiroyuki
    Yamagata, Yoshiki
    Takao, Gen
    Sawada, Haruo
    Mizutani, Kohei
    Sugimoto, Nobuo
    Asai, Kazuhiro
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XIII, 2012, 8526
  • [7] Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error
    Montesano, P. M.
    Cook, B. D.
    Sun, G.
    Simard, M.
    Nelson, R. F.
    Ranson, K. J.
    Zhang, Z.
    Luthcke, S.
    REMOTE SENSING OF ENVIRONMENT, 2013, 130 : 153 - 170
  • [8] An Estimation Model for Regional Forest Canopy Closure Combined with UAV LiDAR and High Spatial Resolution Satellite Remote Sensing Data
    Xu E.
    Guo Y.
    Chen E.
    Li Z.
    Zhao L.
    Liu Q.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (08): : 1298 - 1308
  • [9] Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method
    Chen, Song
    Gong, Ming
    Sun, Hua
    Chen, Ming
    Wang, Binbin
    FORESTS, 2025, 16 (01):
  • [10] Estimating Forest Attributes Using Observations of Canopy Height: A Model-Based Approach
    Mehtatalo, Lauri
    Nyblom, Jukka
    FOREST SCIENCE, 2009, 55 (05) : 411 - 422