Modeling Barrett's Esophagus Progression Using Geometric Variational Autoencoders

被引:0
作者
van Veldhuizen, Vivien [1 ]
Vadgama, Sharvaree [1 ]
de Boer, Onno [2 ]
Meijer, Sybren [2 ]
Bekkers, Erik J. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Amsterdam, Med Ctr, Amsterdam, Netherlands
来源
CANCER PREVENTION THROUGH EARLY DETECTION, CAPTION 2023 | 2023年 / 14295卷
关键词
Oncology; Pathology; Variational Autoencoders; Geometric Deep Learning; Equivariance; Representation Learning;
D O I
10.1007/978-3-031-45350-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection of Barrett's Esophagus (BE), the only known precursor to Esophageal adenocarcinoma (EAC), is crucial for effectively preventing and treating esophageal cancer. In this work, we investigate the potential of geometric Variational Autoencoders (VAEs) to learn a meaningful latent representation that captures the progression of BE. We show that hyperspherical VAE (S- VAE) and Kendall Shape VAE show improved classification accuracy, reconstruction loss, and generative capacity. Additionally, we present a novel autoencoder architecture that can generate qualitative images without the need for a variational framework while retaining the benefits of an autoencoder, such as improved stability and reconstruction quality.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [21] Detecting One-Pixel Attacks Using Variational Autoencoders
    Alatalo, Janne
    Sipola, Tuomo
    Kokkonen, Tero
    INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 : 611 - 623
  • [22] Ship Detection in SAR Images Using Convolutional Variational Autoencoders
    Ferreira, Nuno
    Silveira, Margarida
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2503 - 2506
  • [23] Unsupervised aspect-based summarization using variational autoencoders
    Shan, Huawei
    Lu, Dongyuan
    Zhang, Li
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [24] Semi-Supervised Channel Equalization Using Variational Autoencoders
    Burshtein, David
    Bery, Eli
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19681 - 19695
  • [25] Estimation of Distribution using Population Queue based Variational Autoencoders
    Bhattacharjee, Sourodeep
    Gras, Robin
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1406 - 1414
  • [26] Deep learning for photovoltaic defect detection using variational autoencoders
    Westraadt, Edward J.
    Brettenny, Warren J.
    Clohessy, Chantelle M.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2023, 119 (1-2)
  • [27] Disentangling Generative Factors of Physical Fields Using Variational Autoencoders
    Jacobsen, Christian
    Duraisamy, Karthik
    FRONTIERS IN PHYSICS, 2022, 10
  • [28] Critical appraisal of guidelines for screening and surveillance of Barrett's esophagus
    Michopoulos, Spyridon
    ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (13)
  • [29] An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders
    Walker, Jacob
    Doersch, Carl
    Gupta, Abhinav
    Hebert, Martial
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 835 - 851
  • [30] Audio Source Separation Using Variational Autoencoders and Weak Class Supervision
    Karamatli, Ertug
    Cemgil, Ali Taylan
    Kirbiz, Serap
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1349 - 1353