Modeling Barrett's Esophagus Progression Using Geometric Variational Autoencoders

被引:0
作者
van Veldhuizen, Vivien [1 ]
Vadgama, Sharvaree [1 ]
de Boer, Onno [2 ]
Meijer, Sybren [2 ]
Bekkers, Erik J. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Amsterdam, Med Ctr, Amsterdam, Netherlands
来源
CANCER PREVENTION THROUGH EARLY DETECTION, CAPTION 2023 | 2023年 / 14295卷
关键词
Oncology; Pathology; Variational Autoencoders; Geometric Deep Learning; Equivariance; Representation Learning;
D O I
10.1007/978-3-031-45350-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection of Barrett's Esophagus (BE), the only known precursor to Esophageal adenocarcinoma (EAC), is crucial for effectively preventing and treating esophageal cancer. In this work, we investigate the potential of geometric Variational Autoencoders (VAEs) to learn a meaningful latent representation that captures the progression of BE. We show that hyperspherical VAE (S- VAE) and Kendall Shape VAE show improved classification accuracy, reconstruction loss, and generative capacity. Additionally, we present a novel autoencoder architecture that can generate qualitative images without the need for a variational framework while retaining the benefits of an autoencoder, such as improved stability and reconstruction quality.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [1] Interpretable cardiac anatomy modeling using variational mesh autoencoders
    Beetz, Marcel
    Acero, Jorge Corral
    Banerjee, Abhirup
    Eitel, Ingo
    Zacur, Ernesto
    Lange, Torben
    Stiermaier, Thomas
    Evertz, Ruben
    Backhaus, Soeren J.
    Thiele, Holger
    Bueno-Orovio, Alfonso
    Lamata, Pablo
    Schuster, Andreas
    Grau, Vicente
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [2] A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders
    Akkari, Nissrine
    Casenave, Fabien
    Hachem, Elie
    Ryckelynck, David
    FLUIDS, 2022, 7 (10)
  • [3] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [4] DoS and DDoS mitigation using Variational Autoencoders
    Barli, Eirik Molde
    Yazidi, Anis
    Viedma, Enrique Herrera
    Haugerud, Harek
    COMPUTER NETWORKS, 2021, 199
  • [5] Modeling I/O Performance Variability Using Conditional Variational Autoencoders Short Paper
    Madireddy, Sandeep
    Balaprakash, Prasanna
    Carns, Philip
    Latham, Robert
    Ross, Robert
    Snyder, Shane
    Wild, Stefan M.
    2018 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2018, : 109 - 113
  • [6] Modelling urban networks using Variational Autoencoders
    Kira Kempinska
    Roberto Murcio
    Applied Network Science, 4
  • [7] Blind Channel Equalization using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2018,
  • [8] Modelling urban networks using Variational Autoencoders
    Kempinska, Kira
    Murcio, Roberto
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [9] SRVAE: Super Resolution using Variational Autoencoders
    Heydari, A. Ali
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [10] Classification of Arcobacter species using variational autoencoders
    Patsekin, Valery
    On, Stephen
    Sturgis, Jennifer
    Bae, Euiwon
    Rajwa, Bartek
    Patsekin, Aleksandr
    Robinson, J. Paul
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XI, 2019, 11016