DipSAR: Deep Image Prior for Sparse Sampled Near-Field SAR Millimeter-Wave Imaging

被引:0
作者
Assabumrungrat, Rawin [1 ]
Kumchaiseemak, Nakorn [2 ,3 ]
Wang, Jianping [3 ]
Wang, Dingyang [3 ]
Punpeng, Phoom [4 ]
Fioranelli, Francesco [3 ]
Wilaiprasitporn, Theerawit [2 ]
机构
[1] Tohoku Univ, Sch Engn, Sendai, Miyagi, Japan
[2] Vidyasirimedhi Inst Sci & Technol, Sch Informat Sci & Technol, Rayong, Thailand
[3] Delft Univ Technol, Dept Microelect, Grp MS3, Delft, Netherlands
[4] Ruamrudee Int Sch, Bangkok, Thailand
来源
2023 IEEE SENSORS | 2023年
关键词
millimeter-wave; synthetic aperture radar; deep image prior; near-field imaging; sparse data; RADAR;
D O I
10.1109/SENSORS56945.2023.10325198
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a deep learning-based approach called DipSAR for reconstructing millimeter-wave synthetic aperture radar (SAR) images from sparse samples. The primary challenge lies in the requirement of a large training dataset for deep learning schemes. To overcome this issue, we employ the deep image prior (DIP) technique, which eliminates the need for a large dataset and instead utilizes only the sparse sample itself. Our proposed DipSAR model recovers missing samples from sparse data and reconstructs the SAR image using a conventional method. In this study, we utilize an existing SAR dataset and create fourteen different patterns to generate additional sparse samples by removing certain data points. We then evaluate the performance of DipSAR in comparison to the conventional method. The results show that DipSAR outperforms the conventional method in terms of the intersection over union (IoU) score.
引用
收藏
页数:4
相关论文
共 12 条
  • [1] Plug-and-Play Synthetic Aperture Radar Image Formation Using Deep Priors
    Alver, Muhammed Burak
    Saleem, Ammar
    Cetin, Mujdat
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 43 - 57
  • [2] Huang HH, 2019, INT GEOSCI REMOTE SE, P2782, DOI [10.1109/IGARSS.2019.8900494, 10.1109/igarss.2019.8900494]
  • [3] Microwave and millimeter wave nondestructive testing and evaluation
    Kharkovsky, Sergey
    Zoughi, Reza
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2007, 10 (02) : 26 - 38
  • [4] Toward Ant-Sized Moving Object Localization Using Deep Learning in FMCW Radar: A Pilot Study
    Kumchaiseemak, Nakorn
    Chatnuntawech, Itthi
    Teerapittayanon, Surat
    Kotchapansompote, Palakon
    Kaewlee, Thitikorn
    Piriyajitakonkij, Maytus
    Wilaiprasitporn, Theerawit
    Suwajanakorn, Supasorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Self-Supervised SAR Despeckling Powered by Implicit Deep Denoiser Prior
    Lin, Huangxing
    Zhuang, Yihong
    Huang, Yue
    Ding, Xinghao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [7] Three-dimensional millimeter-wave imaging for concealed weapon detection
    Sheen, DM
    McMakin, DL
    Hall, TE
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (09) : 1581 - 1592
  • [8] Deep Image Prior
    Ulyanov, Dmitry
    Vedaldi, Andrea
    Lempitsky, Victor
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (07) : 1867 - 1888
  • [9] 3-D Short-Range Imaging With Irregular MIMO Arrays Using NUFFT-Based Range Migration Algorithm
    Wang, Jianping
    Aubry, Pascal
    Yarovoy, Alexander
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4730 - 4742
  • [10] Synthetic Aperture Radar Image Generation With Deep Generative Models
    Wang, Ke
    Zhang, Gong
    Leng, Yang
    Leung, Henry
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 912 - 916